These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 23571491)

  • 1. Aluminum oxide mask fabrication by focused ion beam implantation combined with wet etching.
    Liu Z; Iltanen K; Chekurov N; Grigoras K; Tittonen I
    Nanotechnology; 2013 May; 24(17):175304. PubMed ID: 23571491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The fabrication of silicon nanostructures by local gallium implantation and cryogenic deep reactive ion etching.
    Chekurov N; Grigoras K; Peltonen A; Franssila S; Tittonen I
    Nanotechnology; 2009 Feb; 20(6):065307. PubMed ID: 19417383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The fabrication of silicon nanostructures by focused-ion-beam implantation and TMAH wet etching.
    Sievilä P; Chekurov N; Tittonen I
    Nanotechnology; 2010 Apr; 21(14):145301. PubMed ID: 20215652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silicon dioxide mask by plasma enhanced atomic layer deposition in focused ion beam lithography.
    Liu Z; Shah A; Alasaarela T; Chekurov N; Savin H; Tittonen I
    Nanotechnology; 2017 Feb; 28(8):085303. PubMed ID: 28045005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ga(+) beam lithography for nanoscale silicon reactive ion etching.
    Henry MD; Shearn MJ; Chhim B; Scherer A
    Nanotechnology; 2010 Jun; 21(24):245303. PubMed ID: 20484788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Focused-ion-beam-inflicted surface amorphization and gallium implantation--new insights and removal by focused-electron-beam-induced etching.
    Roediger P; Wanzenboeck HD; Waid S; Hochleitner G; Bertagnolli E
    Nanotechnology; 2011 Jun; 22(23):235302. PubMed ID: 21474869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ga+ focused-ion-beam implantation-induced masking for H2 etching of ZnO films.
    Fang HC; Huang JH; Chu WH; Liu CP
    Nanotechnology; 2010 Dec; 21(50):505703. PubMed ID: 21098939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective etching of focused gallium ion beam implanted regions from silicon as a nanofabrication method.
    Han Z; Vehkamäki M; Mattinen M; Salmi E; Mizohata K; Leskelä M; Ritala M
    Nanotechnology; 2015 Jul; 26(26):265304. PubMed ID: 26062985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maskless lithography using silicon oxide etch-stop layer induced by megahertz repetition femtosecond laser pulses.
    Kiani A; Venkatakrishnan K; Tan B; Venkataramanan V
    Opt Express; 2011 May; 19(11):10834-42. PubMed ID: 21643340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of discrete gallium nanoislands on the surface of a Si(001) substrate using a focused ion beam.
    Wang H; Gray JL
    Nanotechnology; 2011 Oct; 22(42):425602. PubMed ID: 21941032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal oxide multilayer hard mask system for 3D nanofabrication.
    Han Z; Salmi E; Vehkamäki M; Leskelä M; Ritala M
    Nanotechnology; 2018 Feb; 29(5):055301. PubMed ID: 29215346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and Characterization of Silicon Micro-Funnels and Tapered Micro-Channels for Stochastic Sensing Applications.
    Archer MJ; Ligler FS
    Sensors (Basel); 2008 Jun; 8(6):3848-3872. PubMed ID: 27879912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of resistless Ga⁺ beam lithography for UV NIL stamp fabrication.
    Rumler M; Fader R; Haas A; Rommel M; Bauer AJ; Frey L
    Nanotechnology; 2013 Sep; 24(36):365302. PubMed ID: 23942207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Submicron-patterning of bulk titanium by nanoimprint lithography and reactive ion etching.
    Domanski M; Luttge R; Lamers E; Walboomers XF; Winnubst L; Jansen JA; Gardeniers JG
    Nanotechnology; 2012 Feb; 23(6):065306. PubMed ID: 22248677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of polymer nanowires via maskless O2 plasma etching.
    Du K; Wathuthanthri I; Liu Y; Kang YT; Choi CH
    Nanotechnology; 2014 Apr; 25(16):165301. PubMed ID: 24670779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cryogenic Etching of High Aspect Ratio 400 nm Pitch Silicon Gratings.
    Miao H; Chen L; Mirzaeimoghri M; Kasica R; Wen H
    J Microelectromech Syst; 2016 Oct; 25(5):963-967. PubMed ID: 27799726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategies for gallium removal after focused ion beam patterning of ferroelectric oxide nanostructures.
    Schilling A; Adams T; Bowman RM; Gregg JM
    Nanotechnology; 2007 Jan; 18(3):035301. PubMed ID: 19636116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Super-selective cryogenic etching for sub-10 nm features.
    Liu Z; Wu Y; Harteneck B; Olynick D
    Nanotechnology; 2013 Jan; 24(1):015305. PubMed ID: 23220824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maskless and resist-free rapid prototyping of three-dimensional structures through electron beam induced deposition (EBID) of carbon in combination with metal-assisted chemical etching (MaCE) of silicon.
    Rykaczewski K; Hildreth OJ; Kulkarni D; Henry MR; Kim SK; Wong CP; Tsukruk VV; Fedorov AG
    ACS Appl Mater Interfaces; 2010 Apr; 2(4):969-73. PubMed ID: 20356053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alumina etch masks for fabrication of high-aspect-ratio silicon micropillars and nanopillars.
    Henry MD; Walavalkar S; Homyk A; Scherer A
    Nanotechnology; 2009 Jun; 20(25):255305. PubMed ID: 19487807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.