BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 23571771)

  • 1. Performance of pharmacovigilance signal-detection algorithms for the FDA adverse event reporting system.
    Harpaz R; DuMouchel W; LePendu P; Bauer-Mehren A; Ryan P; Shah NH
    Clin Pharmacol Ther; 2013 Jun; 93(6):539-46. PubMed ID: 23571771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Minimizing signal detection time in postmarket sequential analysis: balancing positive predictive value and sensitivity.
    Maro JC; Brown JS; Dal Pan GJ; Kulldorff M
    Pharmacoepidemiol Drug Saf; 2014 Aug; 23(8):839-48. PubMed ID: 24700557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Comparison Study of Algorithms to Detect Drug-Adverse Event Associations: Frequentist, Bayesian, and Machine-Learning Approaches.
    Pham M; Cheng F; Ramachandran K
    Drug Saf; 2019 Jun; 42(6):743-750. PubMed ID: 30762164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drug Safety Monitoring in Children: Performance of Signal Detection Algorithms and Impact of Age Stratification.
    Osokogu OU; Dodd C; Pacurariu A; Kaguelidou F; Weibel D; Sturkenboom MC
    Drug Saf; 2016 Sep; 39(9):873-81. PubMed ID: 27255487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential use of data-mining algorithms for the detection of 'surprise' adverse drug reactions.
    Hauben M; Horn S; Reich L
    Drug Saf; 2007; 30(2):143-55. PubMed ID: 17253879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of signal detection algorithms within the Elanco Animal Health Pharmacovigilance database.
    Novotny MJ; Rhodes A; Shields J; Wilson A; Giraldo C; O'Gorman M; Real T; Sarsadskikh A; Wiseman S
    J Vet Pharmacol Ther; 2021 Jan; 44(1):107-115. PubMed ID: 32990946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the impact of design criteria for reference sets on performance evaluation of signal detection algorithms: The case of drug-drug interactions.
    Kontsioti E; Maskell S; Pirmohamed M
    Pharmacoepidemiol Drug Saf; 2023 Aug; 32(8):832-844. PubMed ID: 36916014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adverse event profiles of platinum agents: data mining of the public version of the FDA adverse event reporting system, AERS, and reproducibility of clinical observations.
    Sakaeda T; Kadoyama K; Okuno Y
    Int J Med Sci; 2011; 8(6):487-91. PubMed ID: 21897761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of statistical signal detection methods within and across spontaneous reporting databases.
    Candore G; Juhlin K; Manlik K; Thakrar B; Quarcoo N; Seabroke S; Wisniewski A; Slattery J
    Drug Saf; 2015 Jun; 38(6):577-87. PubMed ID: 25899605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mining association patterns of drug-interactions using post marketing FDA's spontaneous reporting data.
    Ibrahim H; Saad A; Abdo A; Sharaf Eldin A
    J Biomed Inform; 2016 Apr; 60():294-308. PubMed ID: 26903152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards Automating Adverse Event Review: A Prediction Model for Case Report Utility.
    Muñoz MA; Dal Pan GJ; Wei YJ; Delcher C; Xiao H; Kortepeter CM; Winterstein AG
    Drug Saf; 2020 Apr; 43(4):329-338. PubMed ID: 31912439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advancing the science of pharmacovigilance.
    Honig PK
    Clin Pharmacol Ther; 2013 Jun; 93(6):474-5. PubMed ID: 23689213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. OpenVigil FDA - Inspection of U.S. American Adverse Drug Events Pharmacovigilance Data and Novel Clinical Applications.
    Böhm R; von Hehn L; Herdegen T; Klein HJ; Bruhn O; Petri H; Höcker J
    PLoS One; 2016; 11(6):e0157753. PubMed ID: 27326858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypersensitivity reactions to anticancer agents: data mining of the public version of the FDA adverse event reporting system, AERS.
    Kadoyama K; Kuwahara A; Yamamori M; Brown JB; Sakaeda T; Okuno Y
    J Exp Clin Cancer Res; 2011 Oct; 30(1):93. PubMed ID: 21970649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An evaluation of three signal-detection algorithms using a highly inclusive reference event database.
    Hochberg AM; Hauben M; Pearson RK; O'Hara DJ; Reisinger SJ; Goldsmith DI; Gould AL; Madigan D
    Drug Saf; 2009; 32(6):509-25. PubMed ID: 19459718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative performance of two quantitative safety signalling methods: implications for use in a pharmacovigilance department.
    Almenoff JS; LaCroix KK; Yuen NA; Fram D; DuMouchel W
    Drug Saf; 2006; 29(10):875-87. PubMed ID: 16970511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leveraging MEDLINE indexing for pharmacovigilance - Inherent limitations and mitigation strategies.
    Winnenburg R; Sorbello A; Ripple A; Harpaz R; Tonning J; Szarfman A; Francis H; Bodenreider O
    J Biomed Inform; 2015 Oct; 57():425-35. PubMed ID: 26342964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Pharmacovigilance Signaling System Based on FDA Regulatory Action and Post-Marketing Adverse Event Reports.
    Hoffman KB; Dimbil M; Tatonetti NP; Kyle RF
    Drug Saf; 2016 Jun; 39(6):561-75. PubMed ID: 26946292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel Adverse Events of Iloperidone: A Disproportionality Analysis in US Food and Drug Administration Adverse Event Reporting System (FAERS) Database.
    Subeesh V; Maheswari E; Singh H; Beulah TE; Swaroop AM
    Curr Drug Saf; 2019; 14(1):21-26. PubMed ID: 30362421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gabapentin drug misuse signals: A pharmacovigilance assessment using the FDA adverse event reporting system.
    Vickers-Smith R; Sun J; Charnigo RJ; Lofwall MR; Walsh SL; Havens JR
    Drug Alcohol Depend; 2020 Jan; 206():107709. PubMed ID: 31732295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.