BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

50 related articles for article (PubMed ID: 23571880)

  • 1. Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb.
    Inaba H; Hosaka K; Yasuda M; Nakajima Y; Iwakuni K; Akamatsu D; Okubo S; Kohno T; Onae A; Hong FL
    Opt Express; 2013 Apr; 21(7):7891-6. PubMed ID: 23571880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of FBG sensor interrogation based on a FDML wavelength swept laser.
    Jung EJ; Kim CS; Jeong MY; Kim MK; Jeon MY; Jung W; Chen Z
    Opt Express; 2008 Oct; 16(21):16552-60. PubMed ID: 18852764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrastable Offset-Locking Continuous Wave Laser to a Frequency Comb with a Compound Control Method for Precision Interferometry.
    Yang R; Lv H; Luo J; Hu P; Yang H; Fu H; Tan J
    Sensors (Basel); 2020 Feb; 20(5):. PubMed ID: 32106457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical frequency comb generation using cascaded injection of semiconductor lasers.
    Tang HT; Hung YH
    Opt Lett; 2023 Dec; 48(24):6436-6439. PubMed ID: 38099767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of quantum-dash mode-locked lasers (QD-MLLDs) for high-capacity coherent optical communications.
    Khalil M; Xie Y; Berikaa E; Liu J; Lu Z; Poole PJ; Liu G; Weber J; Plant DV; Chen LR
    Opt Express; 2024 Jan; 32(1):217-229. PubMed ID: 38175050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of multiple ultrastable optical frequency combs from an all-fiber photonic platform.
    Kwon D; Jeon I; Lee WK; Heo MS; Kim J
    Sci Adv; 2020 Mar; 6(13):eaax4457. PubMed ID: 32258391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency-stabilized improvement of saturated absorption spectroscopy based on laser linewidth-control strategy.
    Zeng C; Zhao Q; Yang C; Sun Y; Li J; Wang C; Zheng J; Yang Z; Xu S
    Opt Lett; 2024 Feb; 49(3):434-437. PubMed ID: 38300025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient, high-power, narrow-linewidth, continuous-wave quantum-dot semiconductor comb laser.
    Buyalo M; Gubenko A; Mikhrin S; Mikhrin V; Kovsh AR; Krishnamoorthy AV
    Sci Rep; 2024 Feb; 14(1):4197. PubMed ID: 38378848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of the linewidth of a home-built vacuum ultraviolet comb by frequency comb spectroscopy on NO
    Zhu M; Xiao Z; Zhang H; Hua L; Liu Y; Zuo Z; Xu S; Liu X
    Opt Lett; 2024 Jul; 49(13):3757-3760. PubMed ID: 38950260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scalable narrow linewidth high power laser for barium ion optical qubits.
    Ahmadi M; Dutta T; Mukherjee M
    Opt Express; 2024 May; 32(10):17879-17892. PubMed ID: 38858957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Field-programmable-gate-array-based digital frequency stabilization of low-phase-noise diode lasers.
    Avalos V; Nie X; Yang A; He C; Kumar S; Dieckmann K
    Rev Sci Instrum; 2023 Jun; 94(6):. PubMed ID: 37862472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable, narrow-linewidth laser system with a broad frequency tunability and a fast switching time.
    Liu C; Nickerson K; Booth DW; Frechem J; Tai H; Miladi H; Moore K; Shaffer JP
    Opt Lett; 2024 Jan; 49(2):399-402. PubMed ID: 38194578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase-locked, pre-amplified optical injection locking at low input powers.
    Connor Skehan J; Karlsson M; Andrekson PA
    Opt Express; 2024 Jan; 32(2):1956-1965. PubMed ID: 38297736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noise characterization of an ultra-stable laser for optical clocks.
    Wang Z; Ma Z; Wei W; Chang J; Zhang J; Wu Q; Yuan W; Deng K; Lu Z; Zhang J
    Rev Sci Instrum; 2024 May; 95(5):. PubMed ID: 38690980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linewidth Measurement of a Narrow-Linewidth Laser: Principles, Methods, and Systems.
    Chen JQ; Chen C; Sun JJ; Zhang JW; Liu ZH; Qin L; Ning YQ; Wang LJ
    Sensors (Basel); 2024 Jun; 24(11):. PubMed ID: 38894446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultra-low noise optical injection locking amplifier with AOM-based coherent detection scheme.
    Feng Z; Yang F; Zhang X; Chen D; Wei F; Cheng N; Sun Y; Gui Y; Cai H
    Sci Rep; 2018 Sep; 8(1):13135. PubMed ID: 30177754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coherent photo-thermal noise cancellation in a dual-wavelength optical cavity for narrow-linewidth laser frequency stabilisation.
    Dawel F; Wilzewski A; Herbers S; Pelzer L; Kramer J; Hild MB; Dietze K; Krinner L; Spethmann NCH; Schmidt PO
    Opt Express; 2024 Feb; 32(5):7276-7288. PubMed ID: 38439412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated nano-optomechanical displacement sensor with ultrawide optical bandwidth.
    Liu T; Pagliano F; van Veldhoven R; Pogoretskiy V; Jiao Y; Fiore A
    Nat Commun; 2020 May; 11(1):2407. PubMed ID: 32415066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Locking bandwidth of two laterally-coupled semiconductor lasers subject to optical injection.
    Li N; Susanto H; Cemlyn BR; Henning ID; Adams MJ
    Sci Rep; 2018 Jan; 8(1):109. PubMed ID: 29311659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical frequency averaging of light.
    Loh W; Maxson RT; Medeiros AP; West GN; Juodawlkis PW; McConnell RP
    Opt Express; 2023 Jul; 31(16):25507-25514. PubMed ID: 37710435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.