These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Manipulation of coherent Stokes light by transient stimulated Raman scattering in gas filled hollow-core PCF. Chugreev A; Nazarkin A; Abdolvand A; Nold J; Podlipensky A; Russell PS Opt Express; 2009 May; 17(11):8822-9. PubMed ID: 19466132 [TBL] [Abstract][Full Text] [Related]
5. Complete compensation of pulse broadening in an amplifier-based slow light system using a nonlinear regeneration element. Chin S; Gonzalez-Herraez M; Thévenaz L Opt Express; 2009 Nov; 17(24):21910-7. PubMed ID: 19997435 [TBL] [Abstract][Full Text] [Related]
6. Selective excitation of multiple Raman Stokes wavelengths (green-yellow-red) using shaped multi-step pulses from an all-fiber PM MOPA. Lin D; Alam SU; Teh PS; Chen KK; Richardson DJ Opt Express; 2011 Jan; 19(3):2085-92. PubMed ID: 21369025 [TBL] [Abstract][Full Text] [Related]
7. Modeling of micro-diameter-scale liquid core optical fiber filled with various liquids. Xu Y; Chen X; Zhu Y Opt Express; 2008 Jun; 16(12):9205-12. PubMed ID: 18545633 [TBL] [Abstract][Full Text] [Related]
8. Novel auto-correction method in a fiber-optic distributed-temperature sensor using reflected anti-Stokes Raman scattering. Hwang D; Yoon DJ; Kwon IB; Seo DC; Chung Y Opt Express; 2010 May; 18(10):9747-54. PubMed ID: 20588825 [TBL] [Abstract][Full Text] [Related]
9. Shortening pulses from subnanosecond to picosecond by means of ultrafast temporal filtering in an optical fiber. Doutre F; Pagnoux D; Couderc V; Tonello A; Jalocha A Opt Lett; 2009 Jul; 34(14):2087-9. PubMed ID: 19823510 [TBL] [Abstract][Full Text] [Related]
10. Coherent anti-Stokes Raman scattering microscopy imaging with suppression of four-wave mixing in optical fibers. Wang Z; Gao L; Luo P; Yang Y; Hammoudi AA; Wong KK; Wong ST Opt Express; 2011 Apr; 19(9):7960-70. PubMed ID: 21643045 [TBL] [Abstract][Full Text] [Related]
11. Slow light with a swept-frequency source. Zhang R; Zhu Y; Wang J; Gauthier DJ Opt Express; 2010 Dec; 18(26):27263-9. PubMed ID: 21197004 [TBL] [Abstract][Full Text] [Related]
12. Sensitivity enhancement of fiber-laser-based stimulated Raman scattering microscopy by collinear balanced detection technique. Nose K; Ozeki Y; Kishi T; Sumimura K; Nishizawa N; Fukui K; Kanematsu Y; Itoh K Opt Express; 2012 Jun; 20(13):13958-65. PubMed ID: 22714461 [TBL] [Abstract][Full Text] [Related]
13. Correction method for absorption-dependent signal enhancement by a liquid-core optical fiber. Qi D; Berger AJ Appl Opt; 2006 Jan; 45(3):489-94. PubMed ID: 16463733 [TBL] [Abstract][Full Text] [Related]
14. Raman-free nonlinear optical effects in high pressure gas-filled hollow core PCF. Azhar M; Wong GK; Chang W; Joly NY; Russell PS Opt Express; 2013 Feb; 21(4):4405-10. PubMed ID: 23481974 [TBL] [Abstract][Full Text] [Related]
15. Raman probes based on optically-poled double-clad fiber and coupler. Brunetti AC; Margulis W; Rottwitt K Opt Express; 2012 Dec; 20(27):28563-72. PubMed ID: 23263094 [TBL] [Abstract][Full Text] [Related]
17. Subsurface Raman spectroscopy and mapping using a globally illuminated non-confocal fiber-optic array probe in the presence of Raman photon migration. Schulmerich MV; Finney WF; Fredricks RA; Morris MD Appl Spectrosc; 2006 Feb; 60(2):109-14. PubMed ID: 16542561 [TBL] [Abstract][Full Text] [Related]
18. Simultaneous generation and Brillouin amplification of a dark hollow beam with a liquid-core optical fiber. Gao W; Hu X; Sun D; Li J Opt Express; 2012 Aug; 20(18):20715-20. PubMed ID: 23037120 [TBL] [Abstract][Full Text] [Related]