These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. A perfect absorber made of a graphene micro-ribbon metamaterial. Alaee R; Farhat M; Rockstuhl C; Lederer F Opt Express; 2012 Dec; 20(27):28017-24. PubMed ID: 23263036 [TBL] [Abstract][Full Text] [Related]
6. A novel structure for tunable terahertz absorber based on graphene. Xu BZ; Gu CQ; Li Z; Niu ZY Opt Express; 2013 Oct; 21(20):23803-11. PubMed ID: 24104291 [TBL] [Abstract][Full Text] [Related]
7. Broadband plasmon induced transparency in terahertz metamaterials. Zhu Z; Yang X; Gu J; Jiang J; Yue W; Tian Z; Tonouchi M; Han J; Zhang W Nanotechnology; 2013 May; 24(21):214003. PubMed ID: 23618809 [TBL] [Abstract][Full Text] [Related]
8. Terahertz conductivity of reduced graphene oxide films. Hong JT; Lee KM; Son BH; Park SJ; Park DJ; Park JY; Lee S; Ahn YH Opt Express; 2013 Mar; 21(6):7633-40. PubMed ID: 23546146 [TBL] [Abstract][Full Text] [Related]
9. Design of a Tunable Ultra-Broadband Terahertz Absorber Based on Multiple Layers of Graphene Ribbons. Xu Z; Wu D; Liu Y; Liu C; Yu Z; Yu L; Ye H Nanoscale Res Lett; 2018 May; 13(1):143. PubMed ID: 29744682 [TBL] [Abstract][Full Text] [Related]
10. Transmission line model and fields analysis of metamaterial absorber in the terahertz band. Wen QY; Xie YS; Zhang HW; Yang QH; Li YX; Liu YL Opt Express; 2009 Oct; 17(22):20256-65. PubMed ID: 19997251 [TBL] [Abstract][Full Text] [Related]
11. Tuning of superconducting niobium nitride terahertz metamaterials. Wu J; Jin B; Xue Y; Zhang C; Dai H; Zhang L; Cao C; Kang L; Xu W; Chen J; Wu P Opt Express; 2011 Jun; 19(13):12021-6. PubMed ID: 21716437 [TBL] [Abstract][Full Text] [Related]
12. Low-loss terahertz metamaterial from superconducting niobium nitride films. Zhang CH; Wu JB; Jin BB; Ji ZM; Kang L; Xu WW; Chen J; Tonouchi M; Wu PH Opt Express; 2012 Jan; 20(1):42-7. PubMed ID: 22274327 [TBL] [Abstract][Full Text] [Related]
13. Study on a terahertz biosensor based on graphene-metamaterial. Liu J; Fan L; Su J; Yang S; Luo H; Shen X; Ding F Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov; 280():121527. PubMed ID: 35753099 [TBL] [Abstract][Full Text] [Related]
14. Tunable THz absorption in graphene-based heterostructures. Deng XH; Liu JT; Yuan J; Wang TB; Liu NH Opt Express; 2014 Dec; 22(24):30177-83. PubMed ID: 25606948 [TBL] [Abstract][Full Text] [Related]
15. Interaction between graphene and metamaterials: split rings vs. wire pairs. Zou Y; Tassin P; Koschny T; Soukoulis CM Opt Express; 2012 May; 20(11):12198-204. PubMed ID: 22714208 [TBL] [Abstract][Full Text] [Related]
16. A Tunable Terahertz Absorber Based on Double-Layer Patterned Graphene Metamaterials. Tang X; Jia H; Liu L; Li M; Wu D; Zhou K; Li P; Tian L; Yang D; Wang W Materials (Basel); 2023 Jun; 16(11):. PubMed ID: 37297298 [TBL] [Abstract][Full Text] [Related]
17. Wide-band frequency-tunable terahertz and infrared detection with graphene. Kawano Y Nanotechnology; 2013 May; 24(21):214004. PubMed ID: 23618878 [TBL] [Abstract][Full Text] [Related]
18. Tunable magnetoplasmons for efficient terahertz modulator and isolator by gated monolayer graphene. Zhou Y; Xu X; Fan H; Ren Z; Bai J; Wang L Phys Chem Chem Phys; 2013 Apr; 15(14):5084-90. PubMed ID: 23450161 [TBL] [Abstract][Full Text] [Related]