These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 23572121)

  • 1. Genomic prediction in CIMMYT maize and wheat breeding programs.
    Crossa J; Pérez P; Hickey J; Burgueño J; Ornella L; Cerón-Rojas J; Zhang X; Dreisigacker S; Babu R; Li Y; Bonnett D; Mathews K
    Heredity (Edinb); 2014 Jan; 112(1):48-60. PubMed ID: 23572121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximizing efficiency of genomic selection in CIMMYT's tropical maize breeding program.
    Atanda SA; Olsen M; Burgueño J; Crossa J; Dzidzienyo D; Beyene Y; Gowda M; Dreher K; Zhang X; Prasanna BM; Tongoona P; Danquah EY; Olaoye G; Robbins KR
    Theor Appl Genet; 2021 Jan; 134(1):279-294. PubMed ID: 33037897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased prediction accuracy in wheat breeding trials using a marker × environment interaction genomic selection model.
    Lopez-Cruz M; Crossa J; Bonnett D; Dreisigacker S; Poland J; Jannink JL; Singh RP; Autrique E; de los Campos G
    G3 (Bethesda); 2015 Feb; 5(4):569-82. PubMed ID: 25660166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers.
    Crossa J; Campos Gde L; Pérez P; Gianola D; Burgueño J; Araus JL; Makumbi D; Singh RP; Dreisigacker S; Yan J; Arief V; Banziger M; Braun HJ
    Genetics; 2010 Oct; 186(2):713-24. PubMed ID: 20813882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Joint Use of Genome, Pedigree, and Their Interaction with Environment for Predicting the Performance of Wheat Lines in New Environments.
    Howard R; Gianola D; Montesinos-López O; Juliana P; Singh R; Poland J; Shrestha S; Pérez-Rodríguez P; Crossa J; Jarquín D
    G3 (Bethesda); 2019 Sep; 9(9):2925-2934. PubMed ID: 31300481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperspectral Reflectance-Derived Relationship Matrices for Genomic Prediction of Grain Yield in Wheat.
    Krause MR; González-Pérez L; Crossa J; Pérez-Rodríguez P; Montesinos-López O; Singh RP; Dreisigacker S; Poland J; Rutkoski J; Sorrells M; Gore MA; Mondal S
    G3 (Bethesda); 2019 Apr; 9(4):1231-1247. PubMed ID: 30796086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models.
    Cuevas J; Crossa J; Montesinos-López OA; Burgueño J; Pérez-Rodríguez P; de Los Campos G
    G3 (Bethesda); 2017 Jan; 7(1):41-53. PubMed ID: 27793970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic Prediction with Pedigree and Genotype × Environment Interaction in Spring Wheat Grown in South and West Asia, North Africa, and Mexico.
    Sukumaran S; Crossa J; Jarquin D; Lopes M; Reynolds MP
    G3 (Bethesda); 2017 Feb; 7(2):481-495. PubMed ID: 27903632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of multiple traits genomic prediction, genotype by environment interactions and spatial effect to improve prediction accuracy in yield data.
    Tsai HY; Cericola F; Edriss V; Andersen JR; Orabi J; Jensen JD; Jahoor A; Janss L; Jensen J
    PLoS One; 2020; 15(5):e0232665. PubMed ID: 32401769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving accuracies of genomic predictions for drought tolerance in maize by joint modeling of additive and dominance effects in multi-environment trials.
    Dias KODG; Gezan SA; Guimarães CT; Nazarian A; da Costa E Silva L; Parentoni SN; de Oliveira Guimarães PE; de Oliveira Anoni C; Pádua JMV; de Oliveira Pinto M; Noda RW; Ribeiro CAG; de Magalhães JV; Garcia AAF; de Souza JC; Guimarães LJM; Pastina MM
    Heredity (Edinb); 2018 Jul; 121(1):24-37. PubMed ID: 29472694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating genomic-enabled prediction and high-throughput phenotyping in breeding for climate-resilient bread wheat.
    Juliana P; Montesinos-López OA; Crossa J; Mondal S; González Pérez L; Poland J; Huerta-Espino J; Crespo-Herrera L; Govindan V; Dreisigacker S; Shrestha S; Pérez-Rodríguez P; Pinto Espinosa F; Singh RP
    Theor Appl Genet; 2019 Jan; 132(1):177-194. PubMed ID: 30341493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic Selection in Plant Breeding: Methods, Models, and Perspectives.
    Crossa J; Pérez-Rodríguez P; Cuevas J; Montesinos-López O; Jarquín D; de Los Campos G; Burgueño J; González-Camacho JM; Pérez-Elizalde S; Beyene Y; Dreisigacker S; Singh R; Zhang X; Gowda M; Roorkiwal M; Rutkoski J; Varshney RK
    Trends Plant Sci; 2017 Nov; 22(11):961-975. PubMed ID: 28965742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic prediction in biparental tropical maize populations in water-stressed and well-watered environments using low-density and GBS SNPs.
    Zhang X; Pérez-Rodríguez P; Semagn K; Beyene Y; Babu R; López-Cruz MA; San Vicente F; Olsen M; Buckler E; Jannink JL; Prasanna BM; Crossa J
    Heredity (Edinb); 2015 Mar; 114(3):291-9. PubMed ID: 25407079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of Genetic Heterogeneity in Structured Plant Populations Using Multivariate Whole-Genome Regression Models.
    Lehermeier C; Schön CC; de Los Campos G
    Genetics; 2015 Sep; 201(1):323-37. PubMed ID: 26122758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic predictability of interconnected biparental maize populations.
    Riedelsheimer C; Endelman JB; Stange M; Sorrells ME; Jannink JL; Melchinger AE
    Genetics; 2013 Jun; 194(2):493-503. PubMed ID: 23535384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic-enabled prediction with classification algorithms.
    Ornella L; Pérez P; Tapia E; González-Camacho JM; Burgueño J; Zhang X; Singh S; Vicente FS; Bonnett D; Dreisigacker S; Singh R; Long N; Crossa J
    Heredity (Edinb); 2014 Jun; 112(6):616-26. PubMed ID: 24424163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic prediction of agronomic traits in wheat using different models and cross-validation designs.
    Haile TA; Walkowiak S; N'Diaye A; Clarke JM; Hucl PJ; Cuthbert RD; Knox RE; Pozniak CJ
    Theor Appl Genet; 2021 Jan; 134(1):381-398. PubMed ID: 33135095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating genomic prediction strategies for grain carotenoid traits in a tropical/subtropical maize panel.
    LaPorte MF; Suwarno WB; Hannok P; Koide A; Bradbury P; Crossa J; Palacios-Rojas N; Diepenbrock CH
    G3 (Bethesda); 2024 May; 14(5):. PubMed ID: 38427914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic models with genotype × environment interaction for predicting hybrid performance: an application in maize hybrids.
    Acosta-Pech R; Crossa J; de Los Campos G; Teyssèdre S; Claustres B; Pérez-Elizalde S; Pérez-Rodríguez P
    Theor Appl Genet; 2017 Jul; 130(7):1431-1440. PubMed ID: 28401254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Bayesian Genomic Multi-output Regressor Stacking Model for Predicting Multi-trait Multi-environment Plant Breeding Data.
    Montesinos-López OA; Montesinos-López A; Crossa J; Cuevas J; Montesinos-López JC; Gutiérrez ZS; Lillemo M; Philomin J; Singh R
    G3 (Bethesda); 2019 Oct; 9(10):3381-3393. PubMed ID: 31427455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.