These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Increased prediction accuracy in wheat breeding trials using a marker × environment interaction genomic selection model. Lopez-Cruz M; Crossa J; Bonnett D; Dreisigacker S; Poland J; Jannink JL; Singh RP; Autrique E; de los Campos G G3 (Bethesda); 2015 Feb; 5(4):569-82. PubMed ID: 25660166 [TBL] [Abstract][Full Text] [Related]
4. Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Crossa J; Campos Gde L; Pérez P; Gianola D; Burgueño J; Araus JL; Makumbi D; Singh RP; Dreisigacker S; Yan J; Arief V; Banziger M; Braun HJ Genetics; 2010 Oct; 186(2):713-24. PubMed ID: 20813882 [TBL] [Abstract][Full Text] [Related]
5. Joint Use of Genome, Pedigree, and Their Interaction with Environment for Predicting the Performance of Wheat Lines in New Environments. Howard R; Gianola D; Montesinos-López O; Juliana P; Singh R; Poland J; Shrestha S; Pérez-Rodríguez P; Crossa J; Jarquín D G3 (Bethesda); 2019 Sep; 9(9):2925-2934. PubMed ID: 31300481 [TBL] [Abstract][Full Text] [Related]
6. Hyperspectral Reflectance-Derived Relationship Matrices for Genomic Prediction of Grain Yield in Wheat. Krause MR; González-Pérez L; Crossa J; Pérez-Rodríguez P; Montesinos-López O; Singh RP; Dreisigacker S; Poland J; Rutkoski J; Sorrells M; Gore MA; Mondal S G3 (Bethesda); 2019 Apr; 9(4):1231-1247. PubMed ID: 30796086 [TBL] [Abstract][Full Text] [Related]
7. Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models. Cuevas J; Crossa J; Montesinos-López OA; Burgueño J; Pérez-Rodríguez P; de Los Campos G G3 (Bethesda); 2017 Jan; 7(1):41-53. PubMed ID: 27793970 [TBL] [Abstract][Full Text] [Related]
8. Genomic Prediction with Pedigree and Genotype × Environment Interaction in Spring Wheat Grown in South and West Asia, North Africa, and Mexico. Sukumaran S; Crossa J; Jarquin D; Lopes M; Reynolds MP G3 (Bethesda); 2017 Feb; 7(2):481-495. PubMed ID: 27903632 [TBL] [Abstract][Full Text] [Related]
9. Use of multiple traits genomic prediction, genotype by environment interactions and spatial effect to improve prediction accuracy in yield data. Tsai HY; Cericola F; Edriss V; Andersen JR; Orabi J; Jensen JD; Jahoor A; Janss L; Jensen J PLoS One; 2020; 15(5):e0232665. PubMed ID: 32401769 [TBL] [Abstract][Full Text] [Related]
10. Improving accuracies of genomic predictions for drought tolerance in maize by joint modeling of additive and dominance effects in multi-environment trials. Dias KODG; Gezan SA; Guimarães CT; Nazarian A; da Costa E Silva L; Parentoni SN; de Oliveira Guimarães PE; de Oliveira Anoni C; Pádua JMV; de Oliveira Pinto M; Noda RW; Ribeiro CAG; de Magalhães JV; Garcia AAF; de Souza JC; Guimarães LJM; Pastina MM Heredity (Edinb); 2018 Jul; 121(1):24-37. PubMed ID: 29472694 [TBL] [Abstract][Full Text] [Related]