BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 23572585)

  • 41. Bioerosion by pit-forming, temperate-reef sea urchins: History, rates and broader implications.
    Russell MP; Gibbs VK; Duwan E
    PLoS One; 2018; 13(2):e0191278. PubMed ID: 29466357
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bacterial Nucleobases Synergistically Induce Larval Settlement and Metamorphosis in the Invasive Mussel
    He J; Dai Q; Qi Y; Su P; Huang M; Ke C; Feng D
    Appl Environ Microbiol; 2019 Aug; 85(16):. PubMed ID: 31227552
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Chemical mediation of coral larval settlement by crustose coralline algae.
    Tebben J; Motti CA; Siboni N; Tapiolas DM; Negri AP; Schupp PJ; Kitamura M; Hatta M; Steinberg PD; Harder T
    Sci Rep; 2015 Jun; 5():10803. PubMed ID: 26042834
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Temperature and CO(2) additively regulate physiology, morphology and genomic responses of larval sea urchins, Strongylocentrotus purpuratus.
    Padilla-Gamiño JL; Kelly MW; Evans TG; Hofmann GE
    Proc Biol Sci; 2013 May; 280(1759):20130155. PubMed ID: 23536595
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Polymodal sensory perception drives settlement and metamorphosis of Ciona larvae.
    Hoyer J; Kolar K; Athira A; van den Burgh M; Dondorp D; Liang Z; Chatzigeorgiou M
    Curr Biol; 2024 Mar; 34(6):1168-1182.e7. PubMed ID: 38335959
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Calcifying algae maintain settlement cues to larval abalone following algal exposure to extreme ocean acidification.
    O'Leary JK; Barry JP; Gabrielson PW; Rogers-Bennett L; Potts DC; Palumbi SR; Micheli F
    Sci Rep; 2017 Jul; 7(1):5774. PubMed ID: 28720836
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Natural variation and the capacity to adapt to ocean acidification in the keystone sea urchin Strongylocentrotus purpuratus.
    Kelly MW; Padilla-Gamiño JL; Hofmann GE
    Glob Chang Biol; 2013 Aug; 19(8):2536-46. PubMed ID: 23661315
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Are larvae of demersal fishes plankton or nekton?
    Leis JM
    Adv Mar Biol; 2006; 51():57-141. PubMed ID: 16905426
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biofilms and marine invertebrate larvae: what bacteria produce that larvae use to choose settlement sites.
    Hadfield MG
    Ann Rev Mar Sci; 2011; 3():453-70. PubMed ID: 21329213
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Transcriptomic response of sea urchin larvae Strongylocentrotus purpuratus to CO2-driven seawater acidification.
    Todgham AE; Hofmann GE
    J Exp Biol; 2009 Aug; 212(Pt 16):2579-94. PubMed ID: 19648403
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Role of protein kinase C, G-protein coupled receptors, and calcium flux during metamorphosis of the sea urchin Strongylocentrotus purpuratus.
    Amador-Cano G; Carpizo-Ituarte E; Cristino-Jorge D
    Biol Bull; 2006 Apr; 210(2):121-31. PubMed ID: 16641517
    [TBL] [Abstract][Full Text] [Related]  

  • 52. New biomarkers of post-settlement growth in the sea urchin
    Fadl AEA; Mahfouz ME; El-Gamal MMT; Heyland A
    Heliyon; 2017 Oct; 3(10):e00412. PubMed ID: 29034337
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Swimming in an Unsteady World.
    Koehl MA; Cooper T
    Integr Comp Biol; 2015 Oct; 55(4):683-97. PubMed ID: 26220991
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ontogenetic changes in larval swimming and orientation of pre-competent sea urchin Arbacia punctulata in turbulence.
    Wheeler JD; Chan KY; Anderson EJ; Mullineaux LS
    J Exp Biol; 2016 May; 219(Pt 9):1303-10. PubMed ID: 27208032
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Behavioural response thresholds in New Zealand crab megalopae to ambient underwater sound.
    Stanley JA; Radford CA; Jeffs AG
    PLoS One; 2011; 6(12):e28572. PubMed ID: 22163314
    [TBL] [Abstract][Full Text] [Related]  

  • 56. From molecules to morphology: How food supply influences the larvae of sea urchins across all levels of biological organization.
    Somero GN
    Mol Ecol; 2024 Jun; 33(12):e17384. PubMed ID: 38757458
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Marine heatwave temperatures enhance larval performance but are meditated by paternal thermal history and inter-individual differences in the purple sea urchin,
    Leach TS; Hofmann GE
    Front Physiol; 2023; 14():1230590. PubMed ID: 37601631
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A small step or a giant leap: Accounting for settlement delay and dispersal in restoration planning.
    Rodriguez-Perez A; James MA; Sanderson WG
    PLoS One; 2021; 16(8):e0256369. PubMed ID: 34407139
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Rethinking competence in marine life cycles: ontogenetic changes in the settlement response of sand dollar larvae exposed to turbulence.
    Hodin J; Ferner MC; Ng G; Lowe CJ; Gaylord B
    R Soc Open Sci; 2015 Jun; 2(6):150114. PubMed ID: 26543587
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Single-cell RNA sequencing of the
    Paganos P; Voronov D; Musser JM; Arendt D; Arnone MI
    Elife; 2021 Nov; 10():. PubMed ID: 34821556
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.