These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 2357262)

  • 1. Can oligonucleoside methylphosphonates form a stable triplet with a double DNA helix?
    Hausheer FH; Singh UC; Saxe JD; Colvin OM; T'su PO
    Anticancer Drug Des; 1990 May; 5(2):159-67. PubMed ID: 2357262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics investigations of DNA triple helical models: unique features of the Watson-Crick duplex.
    Sekharudu CY; Yathindra N; Sundaralingam M
    J Biomol Struct Dyn; 1993 Oct; 11(2):225-44. PubMed ID: 8286053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hoogsteen DNA duplexes of 3'-3'- and 5'-5'-linked oligonucleotides and trip formation with RNA and DNA pyrimidine single strands: experimental and molecular modeling studies.
    Kandimalla ER; Agrawal S
    Biochemistry; 1996 Dec; 35(48):15332-9. PubMed ID: 8952484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanics studies of dinucleoside methylphosphonates: influence of methylphosphonate and its chirality on the phosphodiester conformation.
    Swarna Latha Y; Yathindra N
    J Biomol Struct Dyn; 1991 Dec; 9(3):613-31. PubMed ID: 1815647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of triple helix forming C-glycoside molecules.
    Li JS; Fan YH; Zhang Y; Marky LA; Gold B
    J Am Chem Soc; 2003 Feb; 125(8):2084-93. PubMed ID: 12590536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA stretching and compression: large-scale simulations of double helical structures.
    Kosikov KM; Gorin AA; Zhurkin VB; Olson WK
    J Mol Biol; 1999 Jun; 289(5):1301-26. PubMed ID: 10373369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics simulations in solvent of the glucocorticoid receptor protein in complex with a glucocorticoid response element DNA sequence.
    Harris LF; Sullivan MR; Popken-Harris PD; Hickok DF
    J Biomol Struct Dyn; 1994 Oct; 12(2):249-70. PubMed ID: 7702769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anti-HIV-1 activity by a triple-helix forming oligonucleotides targeted to polypurine tract on viral RNA.
    Hiratou T; Tsukahara S; Miyano-Kurosaki N; Takai K; Saito T; Yamamoto N; Takaku H
    Nucleosides Nucleotides Nucleic Acids; 2000; 19(10-12):1721-34. PubMed ID: 11200268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FTIR and UV spectroscopy studies of triplex formation between alpha-oligonucleotides with non-ionic phoshoramidate linkages and DNA targets.
    Michel T; Debart F; Vasseur JJ; Geinguenaud F; Taillandier E
    J Biomol Struct Dyn; 2003 Dec; 21(3):435-45. PubMed ID: 14616038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model for parallel triple helix formation by RecA: single-single association with a homologous duplex via the minor groove.
    Bertucat G; Lavery R; Prévost C
    J Biomol Struct Dyn; 1998 Dec; 16(3):535-46. PubMed ID: 10052612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One left-handed strand in DNA-oligonucleotide complexes?
    Gago F; Richards WG
    FEBS Lett; 1989 Jan; 242(2):270-4. PubMed ID: 2914609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recognition of RNA by amide modified backbone nucleic acids: molecular dynamics simulations of DNA-RNA hybrids in aqueous solution.
    Nina M; Fonné-Pfister R; Beaudegnies R; Chekatt H; Jung PM; Murphy-Kessabi F; De Mesmaeker A; Wendeborn S
    J Am Chem Soc; 2005 Apr; 127(16):6027-38. PubMed ID: 15839703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triple Helix Formation in a Topologically Controlled DNA Nanosystem.
    Yamagata Y; Emura T; Hidaka K; Sugiyama H; Endo M
    Chemistry; 2016 Apr; 22(16):5494-8. PubMed ID: 26938310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stable triple helices are formed upon binding of RNA oligonucleotides and their 2'-O-methyl derivatives to double-helical DNA.
    Escudé C; Sun JS; Rougée M; Garestier T; Hélène C
    C R Acad Sci III; 1992; 315(13):521-5. PubMed ID: 1300234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oligonucleotide-directed DNA triple-helix formation: an approach to artificial repressors?
    Maher LJ; Wold B; Dervan PB
    Antisense Res Dev; 1991; 1(3):277-81. PubMed ID: 1821648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stabilization by extra-helical thymines of a DNA duplex with Hoogsteen base pairs.
    Pous J; Urpí L; Subirana JA; Gouyette C; Navaza J; Campos JL
    J Am Chem Soc; 2008 May; 130(21):6755-60. PubMed ID: 18447354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Anisotropic flexibility of DNA depends on the base sequence. Conformation calculations of double-stranded tetranucleotides AAAA:TTTT, (AATT)2, (TTAA)2, GGGG:CCCC, (GGCC)2, (CCGG)2].
    Ul'ianov NB; Zhurkin VB
    Mol Biol (Mosk); 1984; 18(6):1664-85. PubMed ID: 6521743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topology of triple helical DNA.
    Tanaka Y; Kyogoku Y
    Nucleic Acids Symp Ser; 1995; (34):89-90. PubMed ID: 8841566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyrimidine morpholino oligonucleotides form a stable triple helix in the absence of magnesium ions.
    Lacroix L; Arimondo PB; Takasugi M; Hélène C; Mergny JL
    Biochem Biophys Res Commun; 2000 Apr; 270(2):363-9. PubMed ID: 10753631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical modification of pyrimidine TFOs: effect on i-motif and triple helix formation.
    Lacroix L; Mergny JL
    Arch Biochem Biophys; 2000 Sep; 381(1):153-63. PubMed ID: 11019831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.