BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 23573203)

  • 1. Ecological and evolutionary effects of stickleback on community structure.
    Des Roches S; Shurin JB; Schluter D; Harmon LJ
    PLoS One; 2013; 8(4):e59644. PubMed ID: 23573203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive genetic variation mediates bottom-up and top-down control in an aquatic ecosystem.
    Rudman SM; Rodriguez-Cabal MA; Stier A; Sato T; Heavyside J; El-Sabaawi RW; Crutsinger GM
    Proc Biol Sci; 2015 Aug; 282(1812):20151234. PubMed ID: 26203004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short-term fish predation destroys resilience of zooplankton communities and prevents recovery of phytoplankton control by zooplankton grazing.
    Ersoy Z; Brucet S; Bartrons M; Mehner T
    PLoS One; 2019; 14(2):e0212351. PubMed ID: 30768619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary diversification in stickleback affects ecosystem functioning.
    Harmon LJ; Matthews B; Des Roches S; Chase JM; Shurin JB; Schluter D
    Nature; 2009 Apr; 458(7242):1167-70. PubMed ID: 19339968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An experimental test of how parasites of predators can influence trophic cascades and ecosystem functioning.
    Anaya-Rojas JM; Best RJ; Brunner FS; Eizaguirre C; Leal MC; Melián CJ; Seehausen O; Matthews B
    Ecology; 2019 Aug; 100(8):e02744. PubMed ID: 31135996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental Evidence of an Eco-evolutionary Feedback during Adaptive Divergence.
    Matthews B; Aebischer T; Sullam KE; Lundsgaard-Hansen B; Seehausen O
    Curr Biol; 2016 Feb; 26(4):483-9. PubMed ID: 26804555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of fish predators and their foraging traits in shaping zooplankton community structure.
    Moosmann M; Greenway R; Oester R; Matthews B
    Ecol Lett; 2024 Feb; 27(2):e14382. PubMed ID: 38361474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intraguild predation leads to genetically based character shifts in the threespine stickleback.
    Miller SE; Metcalf D; Schluter D
    Evolution; 2015 Dec; 69(12):3194-203. PubMed ID: 26527484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial insurance against a heatwave differs between trophic levels in experimental aquatic communities.
    Vad CF; Hanny-Endrédi A; Kratina P; Abonyi A; Mironova E; Murray DS; Samchyshyna L; Tsakalakis I; Smeti E; Spatharis S; Tan H; Preiler C; Petrusek A; Bengtsson MM; Ptacnik R
    Glob Chang Biol; 2023 Jun; 29(11):3054-3071. PubMed ID: 36946870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intraguild predation drives evolutionary niche shift in threespine stickleback.
    Ingram T; Svanbäck R; Kraft NJ; Kratina P; Southcott L; Schluter D
    Evolution; 2012 Jun; 66(6):1819-32. PubMed ID: 22671549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Predators, resources, and trophic chains in the regulation of plankton population and biomass in oligothrophic lakes].
    Bizina EV
    Zh Obshch Biol; 2000; 61(6):601-15. PubMed ID: 11190562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fish-mediated plankton responses to increased temperature in subtropical aquatic mesocosm ecosystems: Implications for lake management.
    He H; Jin H; Jeppesen E; Li K; Liu Z; Zhang Y
    Water Res; 2018 Nov; 144():304-311. PubMed ID: 30071399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid Divergence of Predator Functional Traits Affects Prey Composition in Aquatic Communities.
    Schmid DW; McGee MD; Best RJ; Seehausen O; Matthews B
    Am Nat; 2019 Mar; 193(3):331-345. PubMed ID: 30794448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Warming shifts top-down and bottom-up control of pond food web structure and function.
    Shurin JB; Clasen JL; Greig HS; Kratina P; Thompson PL
    Philos Trans R Soc Lond B Biol Sci; 2012 Nov; 367(1605):3008-17. PubMed ID: 23007089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution mediates the effects of apex predation on aquatic food webs.
    Urban MC
    Proc Biol Sci; 2013 Jul; 280(1763):20130859. PubMed ID: 23720548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zooplankton grazing pressure is insufficient for primary producer control under elevated warming and nutrient levels.
    Gusha MNC; Dalu T; Wasserman RJ; McQuaid CD
    Sci Total Environ; 2019 Feb; 651(Pt 1):410-418. PubMed ID: 30240923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lake ecosystem health assessment: indicators and methods.
    Xu FL; Tao S; Dawson RW; Li PG; Cao J
    Water Res; 2001 Sep; 35(13):3157-67. PubMed ID: 11487113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increasing zooplankton size diversity enhances the strength of top-down control on phytoplankton through diet niche partitioning.
    Ye L; Chang CY; García-Comas C; Gong GC; Hsieh CH
    J Anim Ecol; 2013 Sep; 82(5):1052-61. PubMed ID: 23506226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of top-predator presence and phenotype on aquatic microbial communities.
    Sullam KE; Matthews B; Aebischer T; Seehausen O; Bürgmann H
    Ecol Evol; 2017 Mar; 7(5):1572-1582. PubMed ID: 28261466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative analysis of dental microwear in threespine stickleback: a new approach to analysis of trophic ecology in aquatic vertebrates.
    Purnell MA; Hart PJ; Baines DC; Bell MA
    J Anim Ecol; 2006 Jul; 75(4):967-77. PubMed ID: 17009760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.