BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 23573809)

  • 1. Differential response of antioxidative systems of maize (Zea mays L.) roots cell walls to osmotic and heavy metal stress.
    Vuletić M; Hadži-Tašković Šukalović V; Marković K; Kravić N; Vučinić Ž; Maksimović V
    Plant Biol (Stuttg); 2014 Jan; 16(1):88-96. PubMed ID: 23573809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maize roots and shoots show distinct profiles of oxidative stress and antioxidant defense under heavy metal toxicity.
    AbdElgawad H; Zinta G; Hamed BA; Selim S; Beemster G; Hozzein WN; Wadaan MAM; Asard H; Abuelsoud W
    Environ Pollut; 2020 Mar; 258():113705. PubMed ID: 31864075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyethylene glycol treatment promotes metabolic events associated with maize callus morphogenic competence.
    Lygin AV; Abdel-Rahman MM; Ulanov AV; Widholm JM; Lozovaya VV
    Phytochemistry; 2012 Oct; 82():46-55. PubMed ID: 22858115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of zinc on antioxidant response in maize (Zea mays L.) leaves.
    Pandey N; Singh AK; Pathak GC; Sharma CP
    Indian J Exp Biol; 2002 Aug; 40(8):954-6. PubMed ID: 12597030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zinc-induced oxidative stress in Verbascum thapsus is caused by an accumulation of reactive oxygen species and quinhydrone in the cell wall.
    Morina F; Jovanovic L; Mojovic M; Vidovic M; Pankovic D; Veljovic Jovanovic S
    Physiol Plant; 2010 Nov; 140(3):209-24. PubMed ID: 20626644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization.
    Schützendübel A; Polle A
    J Exp Bot; 2002 May; 53(372):1351-65. PubMed ID: 11997381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of silicon on maize roots exposed to antimony - growth and antioxidative response.
    Vaculíková M; Vaculík M; Šimková L; Fialová I; Kochanová Z; Sedláková B; Luxová M
    Plant Physiol Biochem; 2014 Oct; 83():279-84. PubMed ID: 25201566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The plasma membrane proteome of maize roots grown under low and high iron conditions.
    Hopff D; Wienkoop S; Lüthje S
    J Proteomics; 2013 Oct; 91():605-18. PubMed ID: 23353019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic adaptations to arsenic-induced oxidative stress in Zea mays and genotoxic effect of arsenic in root tips of Vicia faba and Zea mays.
    Duquesnoy I; Champeau GM; Evray G; Ledoigt G; Piquet-Pissaloux A
    C R Biol; 2010; 333(11-12):814-24. PubMed ID: 21146138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of salicylic acid pretreatment on seeds germination and some defence mechanisms of Zea mays plants under copper stress.
    Moravcová Š; Tůma J; Dučaiová ZK; Waligórski P; Kula M; Saja D; Słomka A; Bąba W; Libik-Konieczny M
    Plant Physiol Biochem; 2018 Jan; 122():19-30. PubMed ID: 29172102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of manganese and copper in vitro and in vivo on peroxidase catalytic cycles.
    Hadži-Tašković Šukalović V; Vuletić M; Veljović-Jovanović S; Vučinić Z
    J Plant Physiol; 2010 Dec; 167(18):1550-7. PubMed ID: 20691497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell wall-associated malate dehydrogenase activity from maize roots.
    Hadži-Tašković Šukalović V; Vuletić M; Marković K; Vučinić Z
    Plant Sci; 2011 Oct; 181(4):465-70. PubMed ID: 21889053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Apoplastic barrier development and water transport in Zea mays seedling roots under salt and osmotic stresses.
    Shen J; Xu G; Zheng HQ
    Protoplasma; 2015 Jan; 252(1):173-80. PubMed ID: 24965373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of changes in growth traits, oxidative stress parameters, and enzymatic and non-enzymatic antioxidant defense mechanisms in Lepidium draba plant under osmotic stress induced by polyethylene glycol.
    Jamshidi Goharrizi K; Moosavi SS; Amirmahani F; Salehi F; Nazari M
    Protoplasma; 2020 Mar; 257(2):459-473. PubMed ID: 31776775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteus mirabilis alleviates zinc toxicity by preventing oxidative stress in maize (Zea mays) plants.
    Islam F; Yasmeen T; Riaz M; Arif MS; Ali S; Raza SH
    Ecotoxicol Environ Saf; 2014 Dec; 110():143-52. PubMed ID: 25240234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of municipal solid waste compost and mineral fertilizer amendments on soil properties and heavy metals distribution in maize plants (Zea mays L.).
    Carbonell G; de Imperial RM; Torrijos M; Delgado M; Rodriguez JA
    Chemosphere; 2011 Nov; 85(10):1614-23. PubMed ID: 21908014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential antioxidative response of tolerant and sensitive maize (Zea mays L.) genotypes to drought stress at reproductive stage.
    Chugh V; Kaur N; Grewal MS; Gupta AK
    Indian J Biochem Biophys; 2013 Apr; 50(2):150-8. PubMed ID: 23720889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of earthworms on metal uptake of heavy metals from polluted mine soils by different crop plants.
    Ruiz E; Rodríguez L; Alonso-Azcárate J
    Chemosphere; 2009 May; 75(8):1035-41. PubMed ID: 19232427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative analysis of fatty acid composition of root and shoot lipids in Zea mays under copper and cadmium stress.
    Chaffai R; Seybou TN; Marzouk B; El Ferjani E
    Acta Biol Hung; 2009 Mar; 60(1):109-25. PubMed ID: 19378928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved tolerance of maize (Zea mays L.) to heavy metals by colonization of a dark septate endophyte (DSE) Exophiala pisciphila.
    Li T; Liu MJ; Zhang XT; Zhang HB; Sha T; Zhao ZW
    Sci Total Environ; 2011 Feb; 409(6):1069-74. PubMed ID: 21195456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.