These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 23574207)

  • 21. Derivation of the generalized Langevin equation in nonstationary environments.
    Kawai S; Komatsuzaki T
    J Chem Phys; 2011 Mar; 134(11):114523. PubMed ID: 21428648
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Application of projection operator method to coarse-grained dynamics with transient potential.
    Uneyama T
    Phys Rev E; 2022 Apr; 105(4-1):044117. PubMed ID: 35590667
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The multiscale coarse-graining method. VII. Free energy decomposition of coarse-grained effective potentials.
    Lu L; Voth GA
    J Chem Phys; 2011 Jun; 134(22):224107. PubMed ID: 21682507
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Equation of motion for coarse-grained simulation based on microscopic description.
    Kinjo T; Hyodo SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051109. PubMed ID: 17677024
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computing the non-Markovian coarse-grained interactions derived from the Mori-Zwanzig formalism in molecular systems: Application to polymer melts.
    Li Z; Lee HS; Darve E; Karniadakis GE
    J Chem Phys; 2017 Jan; 146(1):014104. PubMed ID: 28063444
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using force covariance to derive effective stochastic interactions in dissipative particle dynamics.
    Eriksson A; Jacobi MN; Nyström J; Tunstrøm K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):016707. PubMed ID: 18351960
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microscopic derivation of discrete hydrodynamics.
    Español P; Anero JG; Zúñiga I
    J Chem Phys; 2009 Dec; 131(24):244117. PubMed ID: 20059064
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhomogeneous multiscale dynamics in harmonic lattices.
    Cubero D; Yaliraki SN
    J Chem Phys; 2005 Jan; 122(3):34108. PubMed ID: 15740193
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transferability of coarse-grained force fields: the polymer case.
    Carbone P; Varzaneh HA; Chen X; Müller-Plathe F
    J Chem Phys; 2008 Feb; 128(6):064904. PubMed ID: 18282071
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The CUMULUS coarse graining method: transferable potentials for water and solutes.
    van Hoof B; Markvoort AJ; van Santen RA; Hilbers PA
    J Phys Chem B; 2011 Aug; 115(33):10001-12. PubMed ID: 21740053
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The multiscale coarse-graining method. IX. A general method for construction of three body coarse-grained force fields.
    Das A; Andersen HC
    J Chem Phys; 2012 May; 136(19):194114. PubMed ID: 22612087
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Derivation of the nonequilibrium generalized Langevin equation from a time-dependent many-body Hamiltonian.
    Netz RR
    Phys Rev E; 2024 Jul; 110(1-1):014123. PubMed ID: 39160956
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On the dynamics of reaction coordinates in classical, time-dependent, many-body processes.
    Meyer H; Voigtmann T; Schilling T
    J Chem Phys; 2019 May; 150(17):174118. PubMed ID: 31067913
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coarse-grained forms for equations describing the microscopic motion of particles in a fluid.
    Das SP; Yoshimori A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):043008. PubMed ID: 24229277
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microscopic derivation of causal diffusion equation using the projection operator method.
    Koide T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026135. PubMed ID: 16196672
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coarse-grained molecular dynamics simulations of the phase behavior of the 4-cyano-4'-pentylbiphenyl liquid crystal system.
    Zhang J; Su J; Ma Y; Guo H
    J Phys Chem B; 2012 Feb; 116(7):2075-89. PubMed ID: 22243406
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison between theoretical values and simulation results of viscosity for the dissipative particle dynamics method.
    Satoh A; Majima T
    J Colloid Interface Sci; 2005 Mar; 283(1):251-66. PubMed ID: 15694446
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Energy-conserving coarse-graining of complex molecules.
    Español P; Serrano M; Pagonabarraga I; Zúñiga I
    Soft Matter; 2016 May; 12(21):4821-37. PubMed ID: 27127809
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inversion of radial distribution functions to pair forces by solving the Yvon-Born-Green equation iteratively.
    Cho HM; Chu JW
    J Chem Phys; 2009 Oct; 131(13):134107. PubMed ID: 19814543
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiscale coarse graining of liquid-state systems.
    Izvekov S; Voth GA
    J Chem Phys; 2005 Oct; 123(13):134105. PubMed ID: 16223273
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.