BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 23574217)

  • 1. Electrostatic frequency shifts in amide I vibrational spectra: direct parameterization against experiment.
    Reppert M; Tokmakoff A
    J Chem Phys; 2013 Apr; 138(13):134116. PubMed ID: 23574217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping the amide-I vibrations of model dipeptides with secondary structure sensitivity and amino acid residue specificity, and its application to amyloid β-peptide in aqueous solution.
    Cai K; Zheng X; Liu J; Du F; Yan G; Zhuang D; Yan S
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Aug; 219():391-400. PubMed ID: 31059891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative study of electrostatic models for the amide-I and -II modes: linear and two-dimensional infrared spectra.
    Maekawa H; Ge NH
    J Phys Chem B; 2010 Jan; 114(3):1434-46. PubMed ID: 20050636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanics force field-based map for peptide amide-I mode in solution and its application to alanine di- and tripeptides.
    Cai K; Han C; Wang J
    Phys Chem Chem Phys; 2009 Oct; 11(40):9149-59. PubMed ID: 19812835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amide I vibrational dynamics of N-methylacetamide in polar solvents: the role of electrostatic interactions.
    DeCamp MF; DeFlores L; McCracken JM; Tokmakoff A; Kwac K; Cho M
    J Phys Chem B; 2005 Jun; 109(21):11016-26. PubMed ID: 16852342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatic frequency maps for amide-I mode of β-peptide: Comparison of molecular mechanics force field and DFT calculations.
    Cai K; Zheng X; Du F
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Aug; 183():150-157. PubMed ID: 28448953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Communication: Quantitative multi-site frequency maps for amide I vibrational spectroscopy.
    Reppert M; Tokmakoff A
    J Chem Phys; 2015 Aug; 143(6):061102. PubMed ID: 26277120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dynamics of peptide-water interactions in dialanine: An ultrafast amide I 2D IR and computational spectroscopy study.
    Feng CJ; Tokmakoff A
    J Chem Phys; 2017 Aug; 147(8):085101. PubMed ID: 28863528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrostatic DFT map for the complete vibrational amide band of NMA.
    Hayashi T; Zhuang W; Mukamel S
    J Phys Chem A; 2005 Nov; 109(43):9747-59. PubMed ID: 16833288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional infrared spectroscopy as a probe of the solvent electrostatic field for a twelve residue peptide.
    Wang J; Zhuang W; Mukamel S; Hochstrasser R
    J Phys Chem B; 2008 May; 112(19):5930-7. PubMed ID: 18078331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of two-dimensional infrared spectroscopy to benchmark models for the amide I band of proteins.
    Bondarenko AS; Jansen TL
    J Chem Phys; 2015 Jun; 142(21):212437. PubMed ID: 26049457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DFT-based simulations of amide I' IR spectra of a small protein in solution using empirical electrostatic map with a continuum solvent model.
    Welch WR; Kubelka J
    J Phys Chem B; 2012 Sep; 116(35):10739-47. PubMed ID: 22891757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DFT-based simulations of IR amide I' spectra for a small protein in solution. Comparison of explicit and empirical solvent models.
    Grahnen JA; Amunson KE; Kubelka J
    J Phys Chem B; 2010 Oct; 114(40):13011-20. PubMed ID: 20857992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Empirical IR Frequency Map for Ester C═O Stretching Vibrations.
    Edington SC; Flanagan JC; Baiz CR
    J Phys Chem A; 2016 Jun; 120(22):3888-96. PubMed ID: 27214642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determining in situ protein conformation and orientation from the amide-I sum-frequency generation spectrum: theory and experiment.
    Roeters SJ; van Dijk CN; Torres-Knoop A; Backus EH; Campen RK; Bonn M; Woutersen S
    J Phys Chem A; 2013 Jul; 117(29):6311-22. PubMed ID: 23566310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amide I two-dimensional infrared spectroscopy of proteins.
    Ganim Z; Chung HS; Smith AW; Deflores LP; Jones KC; Tokmakoff A
    Acc Chem Res; 2008 Mar; 41(3):432-41. PubMed ID: 18288813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orthogonal Electric Field Measurements near the Green Fluorescent Protein Fluorophore through Stark Effect Spectroscopy and pK
    Slocum JD; First JT; Webb LJ
    J Phys Chem B; 2017 Jul; 121(28):6799-6812. PubMed ID: 28650636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mechanics force field-based general map for the solvation effect on amide I probe of peptide in different micro-environments.
    Cai K; Su T; Lin S; Zheng R
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 117():548-56. PubMed ID: 24036186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amide-I characteristics of helical β-peptides by linear infrared measurement and computations.
    Zhao J; Shi J; Wang J
    J Phys Chem B; 2014 Jan; 118(1):94-106. PubMed ID: 24328259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Refining protein amide I spectrum simulations with simple yet effective electrostatic models for local wavenumbers and dipole derivative magnitudes.
    Baronio CM; Barth A
    Phys Chem Chem Phys; 2024 Jan; 26(2):1166-1181. PubMed ID: 38099625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.