These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 23574499)

  • 21. Si/PEDOT hybrid core/shell nanowire arrays as photoelectrodes for photoelectrochemical water-splitting.
    Li X; Lu W; Dong W; Chen Q; Wu D; Zhou W; Chen L
    Nanoscale; 2013 Jun; 5(12):5257-61. PubMed ID: 23652765
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Solar driven water oxidation by a bioinspired manganese molecular catalyst.
    Brimblecombe R; Koo A; Dismukes GC; Swiegers GF; Spiccia L
    J Am Chem Soc; 2010 Mar; 132(9):2892-4. PubMed ID: 20155923
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photocatalytic Water Oxidation over Metal Oxide Nanosheets Having a Three-Layer Perovskite Structure.
    Oshima T; Eguchi M; Maeda K
    ChemSusChem; 2016 Feb; 9(4):396-402. PubMed ID: 26733314
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Immobilization of a Molecular Ruthenium Catalyst on Hematite Nanorod Arrays for Water Oxidation with Stable Photocurrent.
    Fan K; Li F; Wang L; Daniel Q; Chen H; Gabrielsson E; Sun J; Sun L
    ChemSusChem; 2015 Oct; 8(19):3242-7. PubMed ID: 26315677
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cascading Interfaces Enable n-Si Photoanodes for Efficient and Stable Solar Water Oxidation.
    He L; Zhou W; Hong L; Wei D; Wang G; Shi X; Shen S
    J Phys Chem Lett; 2019 May; 10(9):2278-2285. PubMed ID: 31002523
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Segmented Pt/Ru, Pt/Ni, and Pt/RuNi nanorods as model bifunctional catalysts for methanol oxidation.
    Liu F; Lee JY; Zhou WJ
    Small; 2006 Jan; 2(1):121-8. PubMed ID: 17193567
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 18.4%-Efficient Heterojunction Si Solar Cells Using Optimized ITO/Top Electrode.
    Kim N; Um HD; Choi I; Kim KH; Seo K
    ACS Appl Mater Interfaces; 2016 May; 8(18):11412-7. PubMed ID: 27092403
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3 D Co
    Samal A; Swain S; Satpati B; Das DP; Mishra BK
    ChemSusChem; 2016 Nov; 9(22):3150-3160. PubMed ID: 27863056
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineering of Sub-Nanometer SiOx Thickness in Si Photocathodes for Optimized Open Circuit Potential.
    Das C; Kot M; Henkel K; Schmeisser D
    ChemSusChem; 2016 Sep; 9(17):2332-6. PubMed ID: 27510311
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation.
    Gorlin Y; Jaramillo TF
    J Am Chem Soc; 2010 Oct; 132(39):13612-4. PubMed ID: 20839797
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A high-performance silicon photoanode enabled by oxygen vacancy modulation on NiOOH electrocatalyst for water oxidation.
    Cai Q; Hong W; Jian C; Liu W
    Nanoscale; 2020 Apr; 12(14):7550-7556. PubMed ID: 32227016
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Highly efficient bioinspired molecular Ru water oxidation catalysts with negatively charged backbone ligands.
    Duan L; Wang L; Li F; Li F; Sun L
    Acc Chem Res; 2015 Jul; 48(7):2084-96. PubMed ID: 26131964
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Visible-light driven water splitting over BiFeO₃ photoanodes grown via the LPCVD reaction of [Bi(OtBu)₃] and [Fe(OtBu)₃]₂ and enhanced with a surface nickel oxygen evolution catalyst.
    Moniz SJ; Blackman CS; Southern P; Weaver PM; Tang J; Carmalt CJ
    Nanoscale; 2015 Oct; 7(39):16343-53. PubMed ID: 26383028
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Active mixed-valent MnO(x) water oxidation catalysts through partial oxidation (corrosion) of nanostructured MnO particles.
    Indra A; Menezes PW; Zaharieva I; Baktash E; Pfrommer J; Schwarze M; Dau H; Driess M
    Angew Chem Int Ed Engl; 2013 Dec; 52(50):13206-10. PubMed ID: 24174384
    [No Abstract]   [Full Text] [Related]  

  • 35. Promoting Charge Separation and Injection by Optimizing the Interfaces of GaN:ZnO Photoanode for Efficient Solar Water Oxidation.
    Wang Z; Zong X; Gao Y; Han J; Xu Z; Li Z; Ding C; Wang S; Li C
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):30696-30702. PubMed ID: 28832111
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of nanoporous silicon layer to reduce the optical losses of crystalline silicon solar cells.
    Lee S; Lee E
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3713-6. PubMed ID: 18047043
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metal-Free Carbon-Based Nanomaterial Coatings Protect Silicon Photoanodes in Solar Water-Splitting.
    Yoon K; Lee JH; Kang J; Kang J; Moody MJ; Hersam MC; Lauhon LJ
    Nano Lett; 2016 Dec; 16(12):7370-7375. PubMed ID: 27960516
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanostructured MoO
    Zhu Y; Yao Y; Luo Z; Pan C; Yang J; Fang Y; Deng H; Liu C; Tan Q; Liu F; Guo Y
    Molecules; 2019 Dec; 25(1):. PubMed ID: 31861563
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photochemical water oxidation by crystalline polymorphs of manganese oxides: structural requirements for catalysis.
    Robinson DM; Go YB; Mui M; Gardner G; Zhang Z; Mastrogiovanni D; Garfunkel E; Li J; Greenblatt M; Dismukes GC
    J Am Chem Soc; 2013 Mar; 135(9):3494-501. PubMed ID: 23391134
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Uncovering structure-activity relationships in manganese-oxide-based heterogeneous catalysts for efficient water oxidation.
    Indra A; Menezes PW; Driess M
    ChemSusChem; 2015 Mar; 8(5):776-85. PubMed ID: 25641823
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.