These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

399 related articles for article (PubMed ID: 23574919)

  • 41. Tunable low energy, compact and high performance neuromorphic circuit for spike-based synaptic plasticity.
    Rahimi Azghadi M; Iannella N; Al-Sarawi S; Abbott D
    PLoS One; 2014; 9(2):e88326. PubMed ID: 24551089
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An implantable VLSI architecture for real time spike sorting in cortically controlled Brain Machine Interfaces.
    Aghagolzadeh M; Zhang F; Oweiss K
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1569-72. PubMed ID: 21096383
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Backpropagation-Based Learning Techniques for Deep Spiking Neural Networks: A Survey.
    Dampfhoffer M; Mesquida T; Valentian A; Anghel L
    IEEE Trans Neural Netw Learn Syst; 2024 Sep; 35(9):11906-11921. PubMed ID: 37027264
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modeling and decoding motor cortical activity using a switching Kalman filter.
    Wu W; Black MJ; Mumford D; Gao Y; Bienenstock E; Donoghue JP
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):933-42. PubMed ID: 15188861
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Feasibility of an ultra-low power digital signal processor platform as a basis for a fully implantable brain-computer interface system.
    Wang PT; Gandasetiawan K; McCrimmon CM; Karimi-Bidhendi A; Liu CY; Heydari P; Nenadic Z; Do AH
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4491-4494. PubMed ID: 28325008
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Advancements in Algorithms and Neuromorphic Hardware for Spiking Neural Networks.
    Javanshir A; Nguyen TT; Mahmud MAP; Kouzani AZ
    Neural Comput; 2022 May; 34(6):1289-1328. PubMed ID: 35534005
    [TBL] [Abstract][Full Text] [Related]  

  • 47. SNAVA-A real-time multi-FPGA multi-model spiking neural network simulation architecture.
    Sripad A; Sanchez G; Zapata M; Pirrone V; Dorta T; Cambria S; Marti A; Krishnamourthy K; Madrenas J
    Neural Netw; 2018 Jan; 97():28-45. PubMed ID: 29054036
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A closed-loop compressive-sensing-based neural recording system.
    Zhang J; Mitra S; Suo Y; Cheng A; Xiong T; Michon F; Welkenhuysen M; Kloosterman F; Chin PS; Hsiao S; Tran TD; Yazicioglu F; Etienne-Cummings R
    J Neural Eng; 2015 Jun; 12(3):036005. PubMed ID: 25874929
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Decoder calibration with ultra small current sample set for intracortical brain-machine interface.
    Zhang P; Ma X; Chen L; Zhou J; Wang C; Li W; He J
    J Neural Eng; 2018 Apr; 15(2):026019. PubMed ID: 29343650
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Real-Time Neural Signals Decoding onto Off-the-Shelf DSP Processors for Neuroprosthetic Applications.
    Pani D; Barabino G; Citi L; Meloni P; Raspopovic S; Micera S; Raffo L
    IEEE Trans Neural Syst Rehabil Eng; 2016 Sep; 24(9):993-1002. PubMed ID: 27164593
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Design and analysis of closed-loop decoder adaptation algorithms for brain-machine interfaces.
    Dangi S; Orsborn AL; Moorman HG; Carmena JM
    Neural Comput; 2013 Jul; 25(7):1693-731. PubMed ID: 23607558
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Design of an experimental setup for delivering intracortical microstimulation in vivo via Spiking Neural Network.
    Di Florio M; Care M; Beaubois R; Cota VR; Barban F; Levi T; Chiappalone M
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083051
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A simulation study on the effects of neuronal ensemble properties on decoding algorithms for intracortical brain-machine interfaces.
    Kim MK; Sohn JW; Lee B; Kim SP
    Biomed Eng Online; 2018 Feb; 17(1):28. PubMed ID: 29486778
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bayesian population decoding of motor cortical activity using a Kalman filter.
    Wu W; Gao Y; Bienenstock E; Donoghue JP; Black MJ
    Neural Comput; 2006 Jan; 18(1):80-118. PubMed ID: 16354382
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ultra-low noise miniaturized neural amplifier with hardware averaging.
    Dweiri YM; Eggers T; McCallum G; Durand DM
    J Neural Eng; 2015 Aug; 12(4):046024. PubMed ID: 26083774
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Long term, stable brain machine interface performance using local field potentials and multiunit spikes.
    Flint RD; Wright ZA; Scheid MR; Slutzky MW
    J Neural Eng; 2013 Oct; 10(5):056005. PubMed ID: 23918061
    [TBL] [Abstract][Full Text] [Related]  

  • 57. NeuCube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data.
    Kasabov NK
    Neural Netw; 2014 Apr; 52():62-76. PubMed ID: 24508754
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Augmenting intracortical brain-machine interface with neurally driven error detectors.
    Even-Chen N; Stavisky SD; Kao JC; Ryu SI; Shenoy KV
    J Neural Eng; 2017 Dec; 14(6):066007. PubMed ID: 29130452
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optimal Mapping of Spiking Neural Network to Neuromorphic Hardware for Edge-AI.
    Xiao C; Chen J; Wang L
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236344
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Efficient decoding with steady-state Kalman filter in neural interface systems.
    Malik WQ; Truccolo W; Brown EN; Hochberg LR
    IEEE Trans Neural Syst Rehabil Eng; 2011 Feb; 19(1):25-34. PubMed ID: 21078582
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.