These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 23575141)

  • 1. Effects of pesticides on the reduction of plant and human pathogenic bacteria in application water.
    Mahovic M; Gu G; Rideout S
    J Food Prot; 2013 Apr; 76(4):719-22. PubMed ID: 23575141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using aqueous chlorine dioxide to prevent contamination of tomatoes with Salmonella enterica and erwinia carotovora during fruit washing.
    Pao S; Kelsey DF; Khalid MF; Ettinger MR
    J Food Prot; 2007 Mar; 70(3):629-34. PubMed ID: 17388051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth of Salmonella enterica in foliar pesticide solutions and its survival during field production and postharvest handling of fresh market tomato.
    Lopez-Velasco G; Tomas-Callejas A; Diribsa D; Wei P; Suslow TV
    J Appl Microbiol; 2013 May; 114(5):1547-58. PubMed ID: 23360242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Survival of pathogenic bacteria in pesticide solutions and on treated tomato plants.
    Guan TT; Blank G; Holley RA
    J Food Prot; 2005 Feb; 68(2):296-304. PubMed ID: 15726972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antibacterial activity of caffeine against plant pathogenic bacteria.
    Sledz W; Los E; Paczek A; Rischka J; Motyka A; Zoledowska S; Piosik J; Lojkowska E
    Acta Biochim Pol; 2015; 62(3):605-12. PubMed ID: 26307771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential Interactions between Salmonella enterica and Ralstonia solanacearum in tomato plants.
    Pollard S; Barak J; Boyer R; Reiter M; Gu G; Rideout S
    J Food Prot; 2014 Feb; 77(2):320-4. PubMed ID: 24490928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential application of Northern Argentine propolis to control some phytopathogenic bacteria.
    Ordóñez RM; Zampini IC; Moreno MI; Isla MI
    Microbiol Res; 2011 Oct; 166(7):578-84. PubMed ID: 21237629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction of Salmonella enterica contamination on grape tomatoes by washing with thyme oil, thymol, and carvacrol as compared with chlorine treatment.
    Lu Y; Wu C
    J Food Prot; 2010 Dec; 73(12):2270-5. PubMed ID: 21219747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colonization and internalization of Salmonella enterica in tomato plants.
    Zheng J; Allard S; Reynolds S; Millner P; Arce G; Blodgett RJ; Brown EW
    Appl Environ Microbiol; 2013 Apr; 79(8):2494-502. PubMed ID: 23377940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of soil, crop debris, and a plant pathogen in Salmonella enterica contamination of tomato plants.
    Barak JD; Liang AS
    PLoS One; 2008 Feb; 3(2):e1657. PubMed ID: 18301739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tomato type and post-treatment water rinse affect efficacy of acid washes against Salmonella enterica inoculated on stem scars of tomatoes and product quality.
    Fan X; Gurtler JB; Sokorai KJB
    Int J Food Microbiol; 2018 Sep; 280():57-65. PubMed ID: 29783044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ evaluation of Paenibacillus alvei in reducing carriage of Salmonella enterica serovar Newport on whole tomato plants.
    Allard S; Enurah A; Strain E; Millner P; Rideout SL; Brown EW; Zheng J
    Appl Environ Microbiol; 2014 Jul; 80(13):3842-9. PubMed ID: 24747888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of overhead spray and brush roller treatment on the survival of Pectobacterium and Salmonella on tomato surfaces.
    Balaguero AN; Sreedharan A; Schneider KR
    J Food Prot; 2015 Jan; 78(1):51-6. PubMed ID: 25581177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Susceptibility of Salmonella enterica Isolates from Tomato Farm Environments to Fatty Acids Naturally Found on Tomato Fruit.
    Dev Kumar G; Micallef SA
    Foodborne Pathog Dis; 2017 May; 14(5):293-301. PubMed ID: 28398868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and expression profiling of tomato genes differentially regulated during a resistance response to Xanthomonas campestris pv. vesicatoria.
    Gibly A; Bonshtien A; Balaji V; Debbie P; Martin GB; Sessa G
    Mol Plant Microbe Interact; 2004 Nov; 17(11):1212-22. PubMed ID: 15553246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Survival of Salmonella Montevideo on tomato leaves and mature green tomatoes.
    Rathinasabapathi B
    J Food Prot; 2004 Oct; 67(10):2277-9. PubMed ID: 15508642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Pseudomonas syringae pv. tomato HrpW protein has domains similar to harpins and pectate lyases and can elicit the plant hypersensitive response and bind to pectate.
    Charkowski AO; Alfano JR; Preston G; Yuan J; He SY; Collmer A
    J Bacteriol; 1998 Oct; 180(19):5211-7. PubMed ID: 9748456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficacy of integrated treatment of UV light and low-dose gamma irradiation on inactivation of Escherichia coli O157:H7 and Salmonella enterica on grape tomatoes.
    Mukhopadhyay S; Ukuku D; Fan X; Juneja VK
    J Food Sci; 2013 Jul; 78(7):M1049-56. PubMed ID: 23701667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imidazolium salts as alternative compounds to control diseases caused by plant pathogenic bacteria.
    Neves YF; Eloi ACL; de Freitas HMM; Soares EGO; Rivillo D; Demétrio da Silva V; Schrekker HS; Badel JL
    J Appl Microbiol; 2020 May; 128(5):1236-1247. PubMed ID: 31922640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of foodborne pathogens and soft-rot bacteria on bell pepper by three strains of bacterial antagonists.
    Liao CH
    J Food Prot; 2009 Jan; 72(1):85-92. PubMed ID: 19205468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.