These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 23575419)

  • 1. Electron beam fabrication of a microfluidic device for studying submicron-scale bacteria.
    Moolman MC; Huang Z; Krishnan ST; Kerssemakers JW; Dekker NH
    J Nanobiotechnology; 2013 Apr; 11():12. PubMed ID: 23575419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of microfluidic devices containing patterned microwell arrays.
    Henley WH; Dennis PJ; Ramsey JM
    Anal Chem; 2012 Feb; 84(3):1776-80. PubMed ID: 22242542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic picoliter bioreactor for microbial single-cell analysis: fabrication, system setup, and operation.
    Gruenberger A; Probst C; Heyer A; Wiechert W; Frunzke J; Kohlheyer D
    J Vis Exp; 2013 Dec; (82):50560. PubMed ID: 24336165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile fabrication of microfluidic systems using electron beam lithography.
    Mali P; Sarkar A; Lal R
    Lab Chip; 2006 Feb; 6(2):310-5. PubMed ID: 16450043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic device fabrication by thermoplastic hot-embossing.
    Yang S; Devoe DL
    Methods Mol Biol; 2013; 949():115-23. PubMed ID: 23329439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of unconventional inertial microfluidic channels using wax 3D printing.
    Raoufi MA; Razavi Bazaz S; Niazmand H; Rouhi O; Asadnia M; Razmjou A; Ebrahimi Warkiani M
    Soft Matter; 2020 Mar; 16(10):2448-2459. PubMed ID: 31984393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography.
    Wilson ME; Kota N; Kim Y; Wang Y; Stolz DB; LeDuc PR; Ozdoganlar OB
    Lab Chip; 2011 Apr; 11(8):1550-5. PubMed ID: 21399830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microfluidic mixing system for single-molecule measurements.
    Pfeil SH; Wickersham CE; Hoffmann A; Lipman EA
    Rev Sci Instrum; 2009 May; 80(5):055105. PubMed ID: 19485532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro-macro hybrid soft-lithography master (MMHSM) fabrication for lab-on-a-chip applications.
    Park J; Li J; Han A
    Biomed Microdevices; 2010 Apr; 12(2):345-51. PubMed ID: 20049640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The single-cell chemostat: an agarose-based, microfluidic device for high-throughput, single-cell studies of bacteria and bacterial communities.
    Moffitt JR; Lee JB; Cluzel P
    Lab Chip; 2012 Apr; 12(8):1487-94. PubMed ID: 22395180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of multilayer-PDMS based microfluidic device for bio-particles concentration detection.
    Masrie M; Majlis BY; Yunas J
    Biomed Mater Eng; 2014; 24(6):1951-8. PubMed ID: 25226891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soft Lithography, Molding, and Micromachining Techniques for Polymer Micro Devices.
    Sen AK; Raj A; Banerjee U; Iqbal SR
    Methods Mol Biol; 2019; 1906():13-54. PubMed ID: 30488383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of polydimethylsiloxane microfluidics using SU-8 molds.
    Zaouk R; Park BY; Madou MJ
    Methods Mol Biol; 2006; 321():17-21. PubMed ID: 16508061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic chemostat for measuring single cell dynamics in bacteria.
    Long Z; Nugent E; Javer A; Cicuta P; Sclavi B; Cosentino Lagomarsino M; Dorfman KD
    Lab Chip; 2013 Mar; 13(5):947-54. PubMed ID: 23334753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A flow cytometry-based submicron-sized bacterial detection system using a movable virtual wall.
    Choi H; Jeon CS; Hwang I; Ko J; Lee S; Choo J; Boo JH; Kim HC; Chung TD
    Lab Chip; 2014 Jul; 14(13):2327-33. PubMed ID: 24828279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid prototyping of microstructures by soft lithography for biotechnology.
    Wolfe DB; Qin D; Whitesides GM
    Methods Mol Biol; 2010; 583():81-107. PubMed ID: 19763460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid electrical lysis of bacterial cells in a microfluidic device.
    Wang HY; Banada PP; Bhunia AK; Lu C
    Methods Mol Biol; 2007; 385():23-35. PubMed ID: 18365702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A microfluidic platform for profiling biomechanical properties of bacteria.
    Sun X; Weinlandt WD; Patel H; Wu M; Hernandez CJ
    Lab Chip; 2014 Jul; 14(14):2491-8. PubMed ID: 24855656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-rapid prototyping of flexible, multi-layered microfluidic devices via razor writing.
    Cosson S; Aeberli LG; Brandenberg N; Lutolf MP
    Lab Chip; 2015 Jan; 15(1):72-6. PubMed ID: 25373917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic mixer designed for performing single-molecule kinetics with confocal detection on timescales from milliseconds to minutes.
    Wunderlich B; Nettels D; Benke S; Clark J; Weidner S; Hofmann H; Pfeil SH; Schuler B
    Nat Protoc; 2013 Aug; 8(8):1459-74. PubMed ID: 23845960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.