These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 2357561)

  • 21. The hypothalamic lateral tuberal nucleus in Alzheimer's disease.
    Kremer B; Swaab D; Bots G; Fisser B; Ravid R; Roos R
    Ann Neurol; 1991 Mar; 29(3):279-84. PubMed ID: 1710433
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Apolipoprotein E immunoreactivity in neurons and neurofibrillary degeneration of aged non-demented and Alzheimer's disease patients.
    Gómez-Ramos P; Mufson EJ; Morán MA
    Microsc Res Tech; 2001 Oct; 55(1):48-58. PubMed ID: 11596149
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Alz-50 immunoreactive neuropil differentiates hippocampal complex subfields in Alzheimer's disease.
    Brady DR; Mufson EJ
    J Comp Neurol; 1991 Mar; 305(3):489-507. PubMed ID: 2037717
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alz 50 recognizes abnormal filaments in Alzheimer's disease and progressive supranuclear palsy.
    Tabaton M; Whitehouse PJ; Perry G; Davies P; Autilio-Gambetti L; Gambetti P
    Ann Neurol; 1988 Sep; 24(3):407-13. PubMed ID: 3067653
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Archival, formalin-fixed tissue: its use in the study of Alzheimer's type changes.
    Dwork AJ; Liu D; Kaufman MA; Prohovnik I
    Clin Neuropathol; 1998; 17(1):45-9. PubMed ID: 9496540
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Widespread appearance of Alz-50 immunoreactive neurons in the human brain with cerebral infarction.
    Uchihara T; Tsuchiya K; Kondo H; Hayama T; Ikeda K
    Stroke; 1995 Nov; 26(11):2145-8. PubMed ID: 7482663
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dendritic reorganisation in the basal forebrain under degenerative conditions and its defects in Alzheimer's disease. III. The basal forebrain compared with other subcortical areas.
    Arendt T; Brückner MK; Bigl V; Marcova L
    J Comp Neurol; 1995 Jan; 351(2):223-46. PubMed ID: 7699112
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thy-1 in hippocampus: normal anatomy and neuritic growth in Alzheimer's disease.
    Leifer D; Kowall NW
    J Neuropathol Exp Neurol; 1992 Mar; 51(2):133-41. PubMed ID: 1347079
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expression of ALZ-50 immunoreactivity in the developing principal sensory nucleus of the trigeminal nerve: effect of transecting the infraorbital nerve.
    Miller MW; al-Ghoul WM; Murtaugh M
    Brain Res; 1991 Sep; 560(1-2):132-8. PubMed ID: 1760722
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pentylenetetrazol seizures increase pro-nerve growth factor-like immunoreactivity in the reticular thalamic nucleus and nerve growth factor mRNA in the dentate gyrus.
    Humpel C; Ebendal T; Cao Y; Olson L
    J Neurosci Res; 1993 Jul; 35(4):419-27. PubMed ID: 8360950
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lesions in the pulvinar in patients with Alzheimer's disease.
    Kuljis RO
    J Neuropathol Exp Neurol; 1994 Mar; 53(2):202-11. PubMed ID: 8120542
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neuronal amyloid-β accumulation within cholinergic basal forebrain in ageing and Alzheimer's disease.
    Baker-Nigh A; Vahedi S; Davis EG; Weintraub S; Bigio EH; Klein WL; Geula C
    Brain; 2015 Jun; 138(Pt 6):1722-37. PubMed ID: 25732182
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interleukin-8 receptor B immunoreactivity in brain and neuritic plaques of Alzheimer's disease.
    Xia M; Qin S; McNamara M; Mackay C; Hyman BT
    Am J Pathol; 1997 Apr; 150(4):1267-74. PubMed ID: 9094983
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Alzheimer's disease affects limbic nuclei of the thalamus.
    Braak H; Braak E
    Acta Neuropathol; 1991; 81(3):261-8. PubMed ID: 1711755
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cellular distribution of insulin-like growth factor-II/mannose-6-phosphate receptor in normal human brain and its alteration in Alzheimer's disease pathology.
    Kar S; Poirier J; Guevara J; Dea D; Hawkes C; Robitaille Y; Quirion R
    Neurobiol Aging; 2006 Feb; 27(2):199-210. PubMed ID: 16399207
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The glutamate-enriched cortical and thalamic input to neurons in the subthalamic nucleus of the rat: convergence with GABA-positive terminals.
    Bevan MD; Francis CM; Bolam JP
    J Comp Neurol; 1995 Oct; 361(3):491-511. PubMed ID: 8550895
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Immunohistochemical localization of the D1 dopamine receptor in rat brain reveals its axonal transport, pre- and postsynaptic localization, and prevalence in the basal ganglia, limbic system, and thalamic reticular nucleus.
    Huang Q; Zhou D; Chase K; Gusella JF; Aronin N; DiFiglia M
    Proc Natl Acad Sci U S A; 1992 Dec; 89(24):11988-92. PubMed ID: 1281547
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Basal forebrain and mesopontine tegmental projections to the reticular thalamic nucleus: an axonal collateralization and immunohistochemical study in the rat.
    Jourdain A; Semba K; Fibiger HC
    Brain Res; 1989 Dec; 505(1):55-65. PubMed ID: 2575437
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Accumulation of a repulsive axonal guidance molecule RGMa in amyloid plaques: a possible hallmark of regenerative failure in Alzheimer's disease brains.
    Satoh J; Tabunoki H; Ishida T; Saito Y; Arima K
    Neuropathol Appl Neurobiol; 2013 Feb; 39(2):109-20. PubMed ID: 22582881
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultrastructure of ChAT-immunoreactive synaptic terminals in the thalamic reticular nucleus of the rat.
    Hallanger AE; Wainer BH
    J Comp Neurol; 1988 Dec; 278(4):486-97. PubMed ID: 3230169
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.