BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 23575948)

  • 1. Functional rescue of cone photoreceptors in retinitis pigmentosa.
    Sahel JA; Léveillard T; Picaud S; Dalkara D; Marazova K; Safran A; Paques M; Duebel J; Roska B; Mohand-Said S
    Graefes Arch Clin Exp Ophthalmol; 2013 Jul; 251(7):1669-77. PubMed ID: 23575948
    [No Abstract]   [Full Text] [Related]  

  • 2. The Survival of Cone Photoreceptors in Retinitis Pigmentosa.
    Wong F; Kwok SY
    JAMA Ophthalmol; 2016 Mar; 134(3):249-50. PubMed ID: 26747298
    [No Abstract]   [Full Text] [Related]  

  • 3. Maintaining Cone Function in Rod-Cone Dystrophies.
    Sahel JA; Léveillard T
    Adv Exp Med Biol; 2018; 1074():499-509. PubMed ID: 29721982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rod-derived Cone Viability Factor-2 is a novel bifunctional-thioredoxin-like protein with therapeutic potential.
    Chalmel F; Léveillard T; Jaillard C; Lardenois A; Berdugo N; Morel E; Koehl P; Lambrou G; Holmgren A; Sahel JA; Poch O
    BMC Mol Biol; 2007 Aug; 8():74. PubMed ID: 17764561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thioredoxin rod-derived cone viability factor protects against photooxidative retinal damage.
    Elachouri G; Lee-Rivera I; Clérin E; Argentini M; Fridlich R; Blond F; Ferracane V; Yang Y; Raffelsberger W; Wan J; Bennett J; Sahel JA; Zack DJ; Léveillard T
    Free Radic Biol Med; 2015 Apr; 81():22-9. PubMed ID: 25596499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal control in the treatment of retinitis pigmentosa.
    Camacho ET; Melara LA; Villalobos MC; Wirkus S
    Bull Math Biol; 2014 Feb; 76(2):292-313. PubMed ID: 24257901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soluble CX3CL1 gene therapy improves cone survival and function in mouse models of retinitis pigmentosa.
    Wang SK; Xue Y; Rana P; Hong CM; Cepko CL
    Proc Natl Acad Sci U S A; 2019 May; 116(20):10140-10149. PubMed ID: 31036641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The disruption of the rod-derived cone viability gene leads to photoreceptor dysfunction and susceptibility to oxidative stress.
    Cronin T; Raffelsberger W; Lee-Rivera I; Jaillard C; Niepon ML; Kinzel B; Clérin E; Petrosian A; Picaud S; Poch O; Sahel JA; Léveillard T
    Cell Death Differ; 2010 Jul; 17(7):1199-210. PubMed ID: 20139892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rod-cone interdependence: implications for therapy of photoreceptor cell diseases.
    Sahel JA; Mohand-Said S; Léveillard T; Hicks D; Picaud S; Dreyfus H
    Prog Brain Res; 2001; 131():649-61. PubMed ID: 11420978
    [No Abstract]   [Full Text] [Related]  

  • 10. Mathematical Model of the Role of RdCVF in the Coexistence of Rods and Cones in a Healthy Eye.
    Camacho ET; Léveillard T; Sahel JA; Wirkus S
    Bull Math Biol; 2016 Jul; 78(7):1394-409. PubMed ID: 27444436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inverse pattern of photoreceptor abnormalities in retinitis pigmentosa and cone-rod dystrophy.
    Yokochi M; Li D; Horiguchi M; Kishi S
    Doc Ophthalmol; 2012 Dec; 125(3):211-8. PubMed ID: 22865508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Retinitis pigmentosa: pathogenic progress and therapeutic hopes].
    Sahel JA
    Rev Prat; 2002 Oct; 52(16):1745-7. PubMed ID: 12564163
    [No Abstract]   [Full Text] [Related]  

  • 13. Long-term rescue of cone photoreceptor degeneration in retinitis pigmentosa 2 (RP2)-knockout mice by gene replacement therapy.
    Mookherjee S; Hiriyanna S; Kaneshiro K; Li L; Li Y; Li W; Qian H; Li T; Khanna H; Colosi P; Swaroop A; Wu Z
    Hum Mol Genet; 2015 Nov; 24(22):6446-58. PubMed ID: 26358772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional cone rescue by RdCVF protein in a dominant model of retinitis pigmentosa.
    Yang Y; Mohand-Said S; Danan A; Simonutti M; Fontaine V; Clerin E; Picaud S; Léveillard T; Sahel JA
    Mol Ther; 2009 May; 17(5):787-95. PubMed ID: 19277021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of retinitis pigmentosa 2 (RP2) protein affects cone photoreceptor sensory cilium elongation in mice.
    Li L; Rao KN; Zheng-Le Y; Hurd TW; Lillo C; Khanna H
    Cytoskeleton (Hoboken); 2015 Sep; 72(9):447-54. PubMed ID: 26383048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rod- versus cone-driven ERGs at different stimulus sizes in normal subjects and retinitis pigmentosa patients.
    Aher AJ; McKeefry DJ; Parry NRA; Maguire J; Murray IJ; Tsai TI; Huchzermeyer C; Kremers J
    Doc Ophthalmol; 2018 Feb; 136(1):27-43. PubMed ID: 29134295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A diffusible factor from normal retinal cells promotes rod photoreceptor survival in an in vitro model of retinitis pigmentosa.
    Streichert LC; Birnbach CD; Reh TA
    J Neurobiol; 1999 Jun; 39(4):475-90. PubMed ID: 10380070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. More Than Meets the Eye: Current Understanding of RPGR Function.
    Khanna H
    Adv Exp Med Biol; 2018; 1074():521-538. PubMed ID: 29721984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Txnip Gene Therapy of Retinitis Pigmentosa Improves Cone Health.
    Xue Y
    Adv Exp Med Biol; 2023; 1415():143-146. PubMed ID: 37440027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RPGR-associated retinal degeneration in human X-linked RP and a murine model.
    Huang WC; Wright AF; Roman AJ; Cideciyan AV; Manson FD; Gewaily DY; Schwartz SB; Sadigh S; Limberis MP; Bell P; Wilson JM; Swaroop A; Jacobson SG
    Invest Ophthalmol Vis Sci; 2012 Aug; 53(9):5594-608. PubMed ID: 22807293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.