These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Busskamp V; Duebel J; Balya D; Fradot M; Viney TJ; Siegert S; Groner AC; Cabuy E; Forster V; Seeliger M; Biel M; Humphries P; Paques M; Mohand-Said S; Trono D; Deisseroth K; Sahel JA; Picaud S; Roska B Science; 2010 Jul; 329(5990):413-7. PubMed ID: 20576849 [TBL] [Abstract][Full Text] [Related]
23. Rod phototransduction in retinitis pigmentosa: estimation and interpretation of parameters derived from the rod a-wave. Hood DC; Birch DG Invest Ophthalmol Vis Sci; 1994 Jun; 35(7):2948-61. PubMed ID: 8206712 [TBL] [Abstract][Full Text] [Related]
24. A mutation in ZNF513, a putative regulator of photoreceptor development, causes autosomal-recessive retinitis pigmentosa. Li L; Nakaya N; Chavali VR; Ma Z; Jiao X; Sieving PA; Riazuddin S; Tomarev SI; Ayyagari R; Riazuddin SA; Hejtmancik JF Am J Hum Genet; 2010 Sep; 87(3):400-9. PubMed ID: 20797688 [TBL] [Abstract][Full Text] [Related]
25. Reprogramming of adult rod photoreceptors prevents retinal degeneration. Montana CL; Kolesnikov AV; Shen SQ; Myers CA; Kefalov VJ; Corbo JC Proc Natl Acad Sci U S A; 2013 Jan; 110(5):1732-7. PubMed ID: 23319618 [TBL] [Abstract][Full Text] [Related]
26. Metabolic and Redox Signaling of the Nucleoredoxin-Like-1 Gene for the Treatment of Genetic Retinal Diseases. Clérin E; Marussig M; Sahel JA; Léveillard T Int J Mol Sci; 2020 Feb; 21(5):. PubMed ID: 32120883 [TBL] [Abstract][Full Text] [Related]
27. Genetic supplementation of RDS alleviates a loss-of-function phenotype in C214S model of retinitis pigmentosa. Nour M; Fliesler SJ; Naash MI Adv Exp Med Biol; 2008; 613():129-38. PubMed ID: 18188937 [No Abstract] [Full Text] [Related]
28. Role of Müller cells in cone mosaic rearrangement in a rat model of retinitis pigmentosa. Lee EJ; Ji Y; Zhu CL; Grzywacz NM Glia; 2011 Jul; 59(7):1107-17. PubMed ID: 21547953 [TBL] [Abstract][Full Text] [Related]
29. AAV8(Y733F)-mediated gene therapy in a Spata7 knockout mouse model of Leber congenital amaurosis and retinitis pigmentosa. Zhong H; Eblimit A; Moayedi Y; Boye SL; Chiodo VA; Chen Y; Li Y; Nichols RM; Hauswirth WW; Chen R; Mardon G Gene Ther; 2015 Aug; 22(8):619-27. PubMed ID: 25965394 [TBL] [Abstract][Full Text] [Related]
30. Abnormal activation and inactivation mechanisms of rod transduction in patients with autosomal dominant retinitis pigmentosa and the pro-23-his mutation. Birch DG; Hood DC; Nusinowitz S; Pepperberg DR Invest Ophthalmol Vis Sci; 1995 Jul; 36(8):1603-14. PubMed ID: 7601641 [TBL] [Abstract][Full Text] [Related]
31. Cone dystrophy with "supernormal" rod ERG: psychophysical testing shows comparable rod and cone temporal sensitivity losses with no gain in rod function. Stockman A; Henning GB; Michaelides M; Moore AT; Webster AR; Cammack J; Ripamonti C Invest Ophthalmol Vis Sci; 2014 Feb; 55(2):832-40. PubMed ID: 24370833 [TBL] [Abstract][Full Text] [Related]
32. Gene Therapies for Retinitis Pigmentosa that Target Glucose Metabolism. Xue Y; Cepko CL Cold Spring Harb Perspect Med; 2024 May; 14(5):. PubMed ID: 37460158 [TBL] [Abstract][Full Text] [Related]
33. Comparing rod and cone function with fundus autofluorescence images in retinitis pigmentosa. Robson AG; Egan C; Holder GE; Bird AC; Fitzke FW Adv Exp Med Biol; 2003; 533():41-7. PubMed ID: 15180246 [No Abstract] [Full Text] [Related]
34. Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa. Punzo C; Kornacker K; Cepko CL Nat Neurosci; 2009 Jan; 12(1):44-52. PubMed ID: 19060896 [TBL] [Abstract][Full Text] [Related]
35. Effect of gene expression on cone survival in retinitis pigmentosa. Cepko CL Retina; 2005 Dec; 25(8 Suppl):S21-S24. PubMed ID: 16374320 [No Abstract] [Full Text] [Related]
36. Treatment possibilities for retinitis pigmentosa. Jacobson SG; Cideciyan AV N Engl J Med; 2010 Oct; 363(17):1669-71. PubMed ID: 20961252 [No Abstract] [Full Text] [Related]
37. Mid-stage intervention achieves similar efficacy as conventional early-stage treatment using gene therapy in a pre-clinical model of retinitis pigmentosa. Wert KJ; Sancho-Pelluz J; Tsang SH Hum Mol Genet; 2014 Jan; 23(2):514-23. PubMed ID: 24101599 [TBL] [Abstract][Full Text] [Related]
38. Remodeling of cone photoreceptor cells after rod degeneration in rd mice. Lin B; Masland RH; Strettoi E Exp Eye Res; 2009 Mar; 88(3):589-99. PubMed ID: 19087876 [TBL] [Abstract][Full Text] [Related]
39. Successful gene therapy in the RPGRIP1-deficient dog: a large model of cone-rod dystrophy. Lhériteau E; Petit L; Weber M; Le Meur G; Deschamps JY; Libeau L; Mendes-Madeira A; Guihal C; François A; Guyon R; Provost N; Lemoine F; Papal S; El-Amraoui A; Colle MA; Moullier P; Rolling F Mol Ther; 2014 Feb; 22(2):265-277. PubMed ID: 24091916 [TBL] [Abstract][Full Text] [Related]
40. Saving cone cells in hereditary rod diseases: a possible role for rod-derived cone viability factor (RdCVF) therapy. Sahel JA Retina; 2005 Dec; 25(8 Suppl):S38-S39. PubMed ID: 16374327 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]