These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 23576002)

  • 21. Electrokinetic concentration, patterning, and sorting of colloids with thin film heaters.
    Velasco V; Williams SJ
    J Colloid Interface Sci; 2013 Mar; 394():598-603. PubMed ID: 23313346
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Joule heating effects on electrokinetic flows with conductivity gradients.
    Song L; Yu L; Brumme C; Shaw R; Zhang C; Xuan X
    Electrophoresis; 2021 Apr; 42(7-8):967-974. PubMed ID: 33253436
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrohydrodynamic-mediated dielectrophoretic separation and transport based on asymmetric electrode pairs.
    Du E; Manoochehri S
    Electrophoresis; 2008 Dec; 29(24):5017-25. PubMed ID: 19130586
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transforming Commercial Textiles and Threads into Sewable and Weavable Electric Heaters.
    Zhang L; Baima M; Andrew TL
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):32299-32307. PubMed ID: 28853279
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Joule heating and zeta potential effects on peristaltic blood flow through porous micro vessels altered by electrohydrodynamic.
    Ranjit NK; Shit GC; Tripathi D
    Microvasc Res; 2018 May; 117():74-89. PubMed ID: 29291432
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Capacitive sensing of droplets for microfluidic devices based on thermocapillary actuation.
    Chen JZ; Darhuber AA; Troian SM; Wagner S
    Lab Chip; 2004 Oct; 4(5):473-80. PubMed ID: 15472731
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Computer modeling of electrodynamic processes in SHF-based water disinfection and heating system as part of the spacecrew life support system].
    Klimarev SI; Zaĭtsev KA
    Aviakosm Ekolog Med; 2012; 46(5):55-8. PubMed ID: 23405422
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Joule heating in electrokinetic flow.
    Xuan X
    Electrophoresis; 2008 Jan; 29(1):33-43. PubMed ID: 18058768
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DC-biased AC-electroosmotic and AC-electrothermal flow mixing in microchannels.
    Ng WY; Goh S; Lam YC; Yang C; Rodríguez I
    Lab Chip; 2009 Mar; 9(6):802-9. PubMed ID: 19255662
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Low-voltage electroosmosis pump for stand-alone microfluidics devices.
    Takamura Y; Onoda H; Inokuchi H; Adachi S; Oki A; Horiike Y
    Electrophoresis; 2003 Jan; 24(1-2):185-92. PubMed ID: 12652590
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Numerical modeling of the Joule heating effect on electrokinetic flow focusing.
    Huang KD; Yang RJ
    Electrophoresis; 2006 May; 27(10):1957-66. PubMed ID: 16619299
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of solution conductivity and electrode shape on the deposition of carbon nanotubes from solution using dielectrophoresis.
    Naieni AK; Nojeh A
    Nanotechnology; 2012 Dec; 23(49):495606. PubMed ID: 23165429
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biofluid pumping and mixing by an AC electrothermal micropump embedded with a spiral microelectrode pair in a cylindrical microchannel.
    Gao X; Li Y
    Electrophoresis; 2018 Dec; 39(24):3156-3170. PubMed ID: 30194859
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Numerical modeling of Joule heating-induced temperature gradient focusing in microfluidic channels.
    Tang G; Yang C
    Electrophoresis; 2008 Mar; 29(5):1006-12. PubMed ID: 18306182
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of conductivity in the electrohydrodynamic patterning of air-liquid interfaces.
    Gambhire P; Thaokar RM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036301. PubMed ID: 23031007
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Joule heating effects on electroosmotic entry flow.
    Prabhakaran RA; Zhou Y; Patel S; Kale A; Song Y; Hu G; Xuan X
    Electrophoresis; 2017 Mar; 38(5):572-579. PubMed ID: 27557612
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Experimental verification of an equivalent circuit for the characterization of electrothermal micropumps: high pumping velocities induced by the external inductance at driving voltages below 5 V.
    Stubbe M; Gyurova A; Gimsa J
    Electrophoresis; 2013 Feb; 34(4):562-74. PubMed ID: 23161729
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Theoretical and numerical analysis of temperature gradient focusing via Joule heating.
    Sommer GJ; Kim SM; Littrell RJ; Hasselbrink EF
    Lab Chip; 2007 Jul; 7(7):898-907. PubMed ID: 17594010
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electric field induced instability and pattern formation in thin liquid films.
    Verma R; Sharma A; Kargupta K; Bhaumik J
    Langmuir; 2005 Apr; 21(8):3710-21. PubMed ID: 15807624
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Carbon nanotube-based flexible electrothermal film heaters with a high heating rate.
    Jia SL; Geng HZ; Wang L; Tian Y; Xu CX; Shi PP; Gu ZZ; Yuan XS; Jing LC; Guo ZY; Kong J
    R Soc Open Sci; 2018 Jun; 5(6):172072. PubMed ID: 30110487
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.