These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 23576105)

  • 1. Interplant volatile signaling in willows: revisiting the original talking trees.
    Pearse IS; Hughes K; Shiojiri K; Ishizaki S; Karban R
    Oecologia; 2013 Jul; 172(3):869-75. PubMed ID: 23576105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complex consequences of herbivory and interplant cues in three annual plants.
    Pearse IS; Porensky LM; Yang LH; Stanton ML; Karban R; Bhattacharyya L; Cox R; Dove K; Higgins A; Kamoroff C; Kirk T; Knight C; Koch R; Parker C; Rollins H; Tanner K
    PLoS One; 2012; 7(5):e38105. PubMed ID: 22675439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How slug herbivory of juvenile hybrid willows alters chemistry, growth and subsequent susceptibility to diverse plant enemies.
    Orians CM; Fritz RS; Hochwender CG; Albrectsen BR; Czesak ME
    Ann Bot; 2013 Aug; 112(4):757-65. PubMed ID: 23475954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Both Volatiles and Cuticular Plant Compounds Determine Oviposition of the Willow Sawfly Nematus oligospilus on Leaves of Salix spp. (Salicaceae).
    Braccini CL; Vega AS; Coll Aráoz MV; Teal PE; Cerrillo T; Zavala JA; Fernandez PC
    J Chem Ecol; 2015 Nov; 41(11):985-96. PubMed ID: 26449817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Community consequences of herbivore-induced bottom-up trophic cascades: the importance of resource heterogeneity.
    Utsumi S; Nakamura M; Ohgushi T
    J Anim Ecol; 2009 Sep; 78(5):953-63. PubMed ID: 19545239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slight tissue wounding fails to induce consistent chemical defense in three willow (Salix spp.) clones.
    Julkunen-Tiitto R; Bryant JP; Kuropat P; Roininen H
    Oecologia; 1995 Apr; 101(4):467-471. PubMed ID: 28306961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leaf trichome responses to herbivory in willows: induction, relaxation and costs.
    Björkman C; Dalin P; Ahrné K
    New Phytol; 2008; 179(1):176-184. PubMed ID: 18399933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in uptake and translocation of selenate and selenite by the weeping willow and hybrid willow.
    Yu XZ; Gu JD
    Environ Sci Pollut Res Int; 2008 Sep; 15(6):499-508. PubMed ID: 18719961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microsite affects willow sapling recovery from bank vole (Myodes glareolus) herbivory, but does not affect grazing risk.
    Shaw RF; Pakeman RJ; Young MR; Iason GR
    Ann Bot; 2013 Aug; 112(4):731-9. PubMed ID: 23798601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions between willows and insect herbivores under enhanced ultraviolet-B radiation.
    Veteli TO; Tegelberg R; Pusenius J; Sipura M; Julkunen-Tiitto R; Aphalo PJ; Tahvanainen J
    Oecologia; 2003 Oct; 137(2):312-20. PubMed ID: 12908105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Damage-induced resistance in sagebrush: volatiles are key to intra- and interplant communication.
    Karban R; Shiojiri K; Huntzinger M; McCall AC
    Ecology; 2006 Apr; 87(4):922-30. PubMed ID: 16676536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Songbird response to increased willow (Salix spp.) growth in Yellowstone's northern range.
    Baril LM; Hansen AJ; Renkin R; Lawrence R
    Ecol Appl; 2011 Sep; 21(6):2283-96. PubMed ID: 21939061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in uptake and translocation of hexavalent and trivalent chromium by two species of willows.
    Yu XZ; Gu JD; Xing LQ
    Ecotoxicology; 2008 Nov; 17(8):747-55. PubMed ID: 18470609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic architecture of susceptibility to herbivores in hybrid willows.
    Fritz RS; Hochwender CG; Brunsfeld SJ; Roche BM
    J Evol Biol; 2003 Nov; 16(6):1115-26. PubMed ID: 14640403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cumulative effects of wild ungulate and livestock herbivory on riparian willows.
    Brookshire JE; Kauffman BJ; Lytjen D; Otting N
    Oecologia; 2002 Aug; 132(4):559-566. PubMed ID: 28547642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytotoxicity of cyanide to weeping willow trees.
    Yu X; Trapp S; Zhou P
    Environ Sci Pollut Res Int; 2005; 12(2):109-13. PubMed ID: 15859117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insect Herbivory Selects for Volatile-Mediated Plant-Plant Communication.
    Kalske A; Shiojiri K; Uesugi A; Sakata Y; Morrell K; Kessler A
    Curr Biol; 2019 Sep; 29(18):3128-3133.e3. PubMed ID: 31522939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The timing of herbivore-induced volatile emission in black poplar (Populus nigra) and the influence of herbivore age and identity affect the value of individual volatiles as cues for herbivore enemies.
    McCormick AC; Boeckler GA; Köllner TG; Gershenzon J; Unsicker SB
    BMC Plant Biol; 2014 Nov; 14():304. PubMed ID: 25429804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flowering, Shoot Production, and Vole Bark Herbivory in a Boreal Willow.
    Elmqvist T; Ericson L; Danell K; Salomonson A
    Ecology; 1987 Dec; 68(6):1623-1629. PubMed ID: 29357146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological and proteomic responses of different willow clones (Salix fragilis x alba) exposed to dredged sediment contaminated by heavy metals.
    Evlard A; Sergeant K; Ferrandis S; Printz B; Renaut J; Guignard C; Paul R; Hausman JF; Campanella B
    Int J Phytoremediation; 2014; 16(7-12):1148-69. PubMed ID: 24933908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.