These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 23576126)
1. Yeast on the milky way: genetics, physiology and biotechnology of Kluyveromyces lactis. Rodicio R; Heinisch JJ Yeast; 2013 May; 30(5):165-77. PubMed ID: 23576126 [TBL] [Abstract][Full Text] [Related]
2. Genetics and molecular physiology of the yeast Kluyveromyces lactis. Schaffrath R; Breunig KD Fungal Genet Biol; 2000 Aug; 30(3):173-90. PubMed ID: 11035939 [TBL] [Abstract][Full Text] [Related]
3. A comparative analysis of the GAL genetic switch between not-so-distant cousins: Saccharomyces cerevisiae versus Kluyveromyces lactis. Rubio-Texeira M FEMS Yeast Res; 2005 Dec; 5(12):1115-28. PubMed ID: 16014343 [TBL] [Abstract][Full Text] [Related]
4. A nuclear gene required for the expression of the linear DNA-associated killer system in the yeast Kluyveromyces lactis. Wesolowski-Louvel M; Tanguy-Rougeau C; Fukuhara H Yeast; 1988 Mar; 4(1):71-81. PubMed ID: 3059713 [TBL] [Abstract][Full Text] [Related]
5. The yeast Kluyveromyces marxianus and its biotechnological potential. Fonseca GG; Heinzle E; Wittmann C; Gombert AK Appl Microbiol Biotechnol; 2008 Jun; 79(3):339-54. PubMed ID: 18427804 [TBL] [Abstract][Full Text] [Related]
6. Endless versatility in the biotechnological applications of Kluyveromyces LAC genes. Rubio-Texeira M Biotechnol Adv; 2006; 24(2):212-25. PubMed ID: 16289464 [TBL] [Abstract][Full Text] [Related]
7. Oxygen-dependent transcriptional regulator Hap1p limits glucose uptake by repressing the expression of the major glucose transporter gene RAG1 in Kluyveromyces lactis. Bao WG; Guiard B; Fang ZA; Donnini C; Gervais M; Passos FM; Ferrero I; Fukuhara H; Bolotin-Fukuhara M Eukaryot Cell; 2008 Nov; 7(11):1895-905. PubMed ID: 18806211 [TBL] [Abstract][Full Text] [Related]
8. Kluyveromyces lactis and the 14th workshop 'Biology of Kluyveromyces'. Fukuhara H FEMS Yeast Res; 2002 Jan; 1(4):333-5. PubMed ID: 12702337 [No Abstract] [Full Text] [Related]
9. Rapid differentiation of the closely related Kluyveromyces lactis var. lactis and K. marxianus strains isolated from dairy products using selective media and PCR/RFLP of the rDNA non transcribed spacer 2. Nguyen HV; Pulvirenti A; Gaillardin C Can J Microbiol; 2000 Dec; 46(12):1115-22. PubMed ID: 11142401 [TBL] [Abstract][Full Text] [Related]
10. Heterologous protein production in the yeast Kluyveromyces lactis. van Ooyen AJ; Dekker P; Huang M; Olsthoorn MM; Jacobs DI; Colussi PA; Taron CH FEMS Yeast Res; 2006 May; 6(3):381-92. PubMed ID: 16630278 [TBL] [Abstract][Full Text] [Related]
11. An approach to the hypoxic and oxidative stress responses in Kluyveromyces lactis by analysis of mRNA levels. Blanco M; Núñez L; Tarrío N; Canto E; Becerra M; González-Siso MI; Cerdán ME FEMS Yeast Res; 2007 Aug; 7(5):702-14. PubMed ID: 17425672 [TBL] [Abstract][Full Text] [Related]
12. Kluyveromyces lactis SSO1 and SEB1 genes are functional in Saccharomyces cerevisiae and enhance production of secreted proteins when overexpressed. Toikkanen JH; Sundqvist L; Keränen S Yeast; 2004 Sep; 21(12):1045-55. PubMed ID: 15449305 [TBL] [Abstract][Full Text] [Related]
13. Highly efficient assimilation of lactose by a metabolically engineered strain of Saccharomyces cerevisiae. Rubio-Texeira M; Castrillo JI; Adam AC; Ugalde UO; Polaina J Yeast; 1998 Jun; 14(9):827-37. PubMed ID: 9818720 [TBL] [Abstract][Full Text] [Related]
14. Why does Kluyveromyces lactis not grow under anaerobic conditions? Comparison of essential anaerobic genes of Saccharomyces cerevisiae with the Kluyveromyces lactis genome. Snoek IS; Steensma HY FEMS Yeast Res; 2006 May; 6(3):393-403. PubMed ID: 16630279 [TBL] [Abstract][Full Text] [Related]
15. Regulation of glycolysis by casein kinase I (Rag8p) in Kluyveromyces lactis involves a DNA-binding protein, Sck1p, a homologue of Sgc1p of Saccharomyces cerevisiae. Lemaire M; Guyon A; Betina S; Wésolowski-Louvel M Curr Genet; 2002 Mar; 40(6):355-64. PubMed ID: 11919674 [TBL] [Abstract][Full Text] [Related]
16. Production of squalene by lactose-fermenting yeast Kluyveromyces lactis with reduced squalene epoxidase activity. Drozdíková E; Garaiová M; Csáky Z; Obernauerová M; Hapala I Lett Appl Microbiol; 2015 Jul; 61(1):77-84. PubMed ID: 25864715 [TBL] [Abstract][Full Text] [Related]
17. The high fermentative metabolism of Kluyveromyces marxianus UFV-3 relies on the increased expression of key lactose metabolic enzymes. Diniz RH; Silveira WB; Fietto LG; Passos FM Antonie Van Leeuwenhoek; 2012 Mar; 101(3):541-50. PubMed ID: 22068918 [TBL] [Abstract][Full Text] [Related]
18. Disruption of the MNN10 gene enhances protein secretion in Kluyveromyces lactis and Saccharomyces cerevisiae. Bartkeviciūte D; Sasnauskas K FEMS Yeast Res; 2004 Sep; 4(8):833-40. PubMed ID: 15450190 [TBL] [Abstract][Full Text] [Related]
19. Characterization of a gene similar to BIK1 in the yeast Kluyveromyces lactis. Lamas-Maceiras M; Cerdán ME; Lloret A; Freire-Picos MA Yeast; 2004 Oct; 21(13):1067-75. PubMed ID: 15484289 [TBL] [Abstract][Full Text] [Related]
20. The Gbeta(KlSte4p) subunit of the heterotrimeric G protein has a positive and essential role in the induction of mating in the yeast Kluyveromyces lactis. Kawasaki L; Saviñón-Tejeda AL; Ongay-Larios L; Ramírez J; Coria R Yeast; 2005 Sep; 22(12):947-56. PubMed ID: 16134098 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]