These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 23576190)

  • 1. Evolutionary concepts in ecotoxicology: tracing the genetic background of differential cadmium sensitivities in invertebrate lineages.
    Dallinger R; Höckner M
    Ecotoxicology; 2013 Jul; 22(5):767-78. PubMed ID: 23576190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative genetics approaches to study evolutionary processes in ecotoxicology; a perspective from research on the evolution of resistance.
    Klerks PL; Xie L; Levinton JS
    Ecotoxicology; 2011 May; 20(3):513-23. PubMed ID: 21516382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic structure and diversity of animal populations exposed to metal pollution.
    Mussali-Galante P; Tovar-Sánchez E; Valverde M; Rojas E
    Rev Environ Contam Toxicol; 2014; 227():79-106. PubMed ID: 24158580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epigenetics in an ecotoxicological context.
    Vandegehuchte MB; Janssen CR
    Mutat Res Genet Toxicol Environ Mutagen; 2014 Apr; 764-765():36-45. PubMed ID: 24004878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary patterns and physicochemical properties explain macroinvertebrate sensitivity to heavy metals.
    Malaj E; Guénard G; Schäfer RB; von der Ohe PC
    Ecol Appl; 2016 Jun; 26(4):1249-59. PubMed ID: 27509762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ecotoxicological epigenetics in invertebrates: Emerging tool for the evaluation of present and past pollution burden.
    Šrut M
    Chemosphere; 2021 Nov; 282():131026. PubMed ID: 34111635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Additive vs non-additive genetic components in lethal cadmium tolerance of Gammarus (Crustacea): novel light on the assessment of the potential for adaptation to contamination.
    Chaumot A; Gos P; Garric J; Geffard O
    Aquat Toxicol; 2009 Oct; 94(4):294-9. PubMed ID: 19709762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genes and environment - striking the fine balance between sophisticated biomonitoring and true functional environmental genomics.
    Steinberg CE; Stürzenbaum SR; Menzel R
    Sci Total Environ; 2008 Aug; 400(1-3):142-61. PubMed ID: 18817948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cryptic Species in Ecotoxicology.
    Jourdan J; Bundschuh M; Copilaș-Ciocianu D; Fišer C; Grabowski M; Hupało K; Jemec Kokalj A; Kabus J; Römbke J; Soose LJ; Oehlmann J
    Environ Toxicol Chem; 2023 Sep; 42(9):1889-1914. PubMed ID: 37314101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporating evolutionary insights to improve ecotoxicology for freshwater species.
    Brady SP; Richardson JL; Kunz BK
    Evol Appl; 2017 Sep; 10(8):829-838. PubMed ID: 29151874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ecotoxicology, ecophysiology, and mechanistic studies with rotifers.
    Dahms HU; Hagiwara A; Lee JS
    Aquat Toxicol; 2011 Jan; 101(1):1-12. PubMed ID: 20961628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and application of the adverse outcome pathway framework for understanding and predicting chronic toxicity: I. Challenges and research needs in ecotoxicology.
    Groh KJ; Carvalho RN; Chipman JK; Denslow ND; Halder M; Murphy CA; Roelofs D; Rolaki A; Schirmer K; Watanabe KH
    Chemosphere; 2015 Feb; 120():764-77. PubMed ID: 25439131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microevolution and ecotoxicology of metals in invertebrates.
    Morgan AJ; Kille P; Stürzenbaum SR
    Environ Sci Technol; 2007 Feb; 41(4):1085-96. PubMed ID: 17593704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laboratory versus wild populations: the importance of population origin in aquatic ecotoxicology.
    Romero-Blanco A; Alonso Á
    Environ Sci Pollut Res Int; 2022 Apr; 29(16):22798-22808. PubMed ID: 35041167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patterns of DNA methylation in animals: an ecotoxicological perspective.
    Head JA
    Integr Comp Biol; 2014 Jul; 54(1):77-86. PubMed ID: 24785828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An assessment of the potential of the microbial assay for risk assessment (MARA) for ecotoxicological testing.
    Fai PB; Grant A
    Ecotoxicology; 2010 Nov; 19(8):1626-33. PubMed ID: 20882341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transgenerational Adaptation to Pollution Changes Energy Allocation in Populations of Nematodes.
    Goussen B; Péry AR; Bonzom JM; Beaudouin R
    Environ Sci Technol; 2015 Oct; 49(20):12500-8. PubMed ID: 26419286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Framework for traits-based assessment in ecotoxicology.
    Rubach MN; Ashauer R; Buchwalter DB; De Lange H; Hamer M; Preuss TG; Töpke K; Maund SJ
    Integr Environ Assess Manag; 2011 Apr; 7(2):172-86. PubMed ID: 20981835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stem cells of aquatic invertebrates as an advanced tool for assessing ecotoxicological impacts.
    Rosner A; Armengaud J; Ballarin L; Barnay-Verdier S; Cima F; Coelho AV; Domart-Coulon I; Drobne D; Genevière AM; Jemec Kokalj A; Kotlarska E; Lyons DM; Mass T; Paz G; Pazdro K; Perić L; Ramšak A; Rakers S; Rinkevich B; Spagnuolo A; Sugni M; Cambier S
    Sci Total Environ; 2021 Jun; 771():144565. PubMed ID: 33736145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomarkers in terrestrial invertebrates for ecotoxicological soil risk assessment.
    Kammenga JE; Dallinger R; Donker MH; Köhler HR; Simonsen V; Triebskorn R; Weeks JM
    Rev Environ Contam Toxicol; 2000; 164():93-147. PubMed ID: 12587835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.