BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 23576224)

  • 1. Chemical biology approaches to study protein cysteine sulfenylation.
    Pan J; Carroll KS
    Biopolymers; 2014 Feb; 101(2):165-72. PubMed ID: 23576224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cysteine-Mediated Redox Regulation of Cell Signaling in Chondrocytes Stimulated With Fibronectin Fragments.
    Wood ST; Long DL; Reisz JA; Yammani RR; Burke EA; Klomsiri C; Poole LB; Furdui CM; Loeser RF
    Arthritis Rheumatol; 2016 Jan; 68(1):117-26. PubMed ID: 26314228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mining for protein S-sulfenylation in
    Huang J; Willems P; Wei B; Tian C; Ferreira RB; Bodra N; Martínez Gache SA; Wahni K; Liu K; Vertommen D; Gevaert K; Carroll KS; Van Montagu M; Yang J; Van Breusegem F; Messens J
    Proc Natl Acad Sci U S A; 2019 Oct; 116(42):21256-21261. PubMed ID: 31578252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo detection of protein cysteine sulfenylation in plastids.
    De Smet B; Willems P; Fernandez-Fernandez AD; Alseekh S; Fernie AR; Messens J; Van Breusegem F
    Plant J; 2019 Feb; 97(4):765-778. PubMed ID: 30394608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The redox biochemistry of protein sulfenylation and sulfinylation.
    Lo Conte M; Carroll KS
    J Biol Chem; 2013 Sep; 288(37):26480-8. PubMed ID: 23861405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological chemistry and functionality of protein sulfenic acids and related thiol modifications.
    Devarie-Baez NO; Silva Lopez EI; Furdui CM
    Free Radic Res; 2016; 50(2):172-94. PubMed ID: 26340608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global, in situ, site-specific analysis of protein S-sulfenylation.
    Yang J; Gupta V; Tallman KA; Porter NA; Carroll KS; Liebler DC
    Nat Protoc; 2015 Jul; 10(7):1022-37. PubMed ID: 26086405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endogenous, regulatory cysteine sulfenylation of ERK kinases in response to proliferative signals.
    Keyes JD; Parsonage D; Yammani RD; Rogers LC; Kesty C; Furdui CM; Nelson KJ; Poole LB
    Free Radic Biol Med; 2017 Nov; 112():534-543. PubMed ID: 28843779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mining the thiol proteome for sulfenic acid modifications reveals new targets for oxidation in cells.
    Leonard SE; Reddie KG; Carroll KS
    ACS Chem Biol; 2009 Sep; 4(9):783-99. PubMed ID: 19645509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A critical evaluation of probes for cysteine sulfenic acid.
    Pople JMM; Chalker JM
    Curr Opin Chem Biol; 2021 Feb; 60():55-65. PubMed ID: 32866852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity-Based Sensing for Site-Specific Proteomic Analysis of Cysteine Oxidation.
    Shi Y; Carroll KS
    Acc Chem Res; 2020 Jan; 53(1):20-31. PubMed ID: 31869209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Comprehensive Review of In silico Analysis for Protein S-sulfenylation Sites.
    Hasan MM; Khatun MS; Kurata H
    Protein Pept Lett; 2018; 25(9):815-821. PubMed ID: 30182830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DYn-2 Based Identification of Arabidopsis Sulfenomes.
    Akter S; Huang J; Bodra N; De Smet B; Wahni K; Rombaut D; Pauwels J; Gevaert K; Carroll K; Van Breusegem F; Messens J
    Mol Cell Proteomics; 2015 May; 14(5):1183-200. PubMed ID: 25693797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathways crossing mammalian and plant sulfenomic landscapes.
    Huang J; Willems P; Van Breusegem F; Messens J
    Free Radic Biol Med; 2018 Jul; 122():193-201. PubMed ID: 29476921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using deep neural networks and biological subwords to detect protein S-sulfenylation sites.
    Do DT; Le TQT; Le NQK
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32613242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation.
    Denu JM; Tanner KG
    Biochemistry; 1998 Apr; 37(16):5633-42. PubMed ID: 9548949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein topology determines cysteine oxidation fate: the case of sulfenyl amide formation among protein families.
    Defelipe LA; Lanzarotti E; Gauto D; Marti MA; Turjanski AG
    PLoS Comput Biol; 2015 Mar; 11(3):e1004051. PubMed ID: 25741692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of Cysteine Sulfenic Acid on
    Niu Y; Chen Z; Jiang Z; Yang Y; Liu G; Cheng X; Jiang Z; Zhang G; Tong L; Tang B
    ACS Chem Biol; 2023 Jun; 18(6):1351-1359. PubMed ID: 37260364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ visualization and detection of protein sulfenylation responses in living cells through a dimedone-based fluorescent probe.
    Yin Q; Huang C; Zhang C; Zhu W; Xu Y; Qian X; Yang Y
    Org Biomol Chem; 2013 Nov; 11(43):7566-73. PubMed ID: 24097070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein sulfenic acid formation: from cellular damage to redox regulation.
    Roos G; Messens J
    Free Radic Biol Med; 2011 Jul; 51(2):314-26. PubMed ID: 21605662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.