These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 23576285)

  • 1. The skeleton flight apparatus of North American bluebirds (Sialia): phylogenetic thrushes or functional flycatchers?
    Corbin CE; Lowenberger LK; Dorkoski RP
    J Morphol; 2013 Aug; 274(8):909-17. PubMed ID: 23576285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ecology and caudal skeletal morphology in birds: the convergent evolution of pygostyle shape in underwater foraging taxa.
    Felice RN; O'Connor PM
    PLoS One; 2014; 9(2):e89737. PubMed ID: 24586998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross sectional geometry of the forelimb skeleton and flight mode in pelecaniform birds.
    Simons EL; Hieronymus TL; O'Connor PM
    J Morphol; 2011 Aug; 272(8):958-71. PubMed ID: 21567447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Qualitative skeletal correlates of wing shape in extant birds (Aves: Neoaves).
    Hieronymus TL
    BMC Evol Biol; 2015 Feb; 15():30. PubMed ID: 25880306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cruising the rain forest floor: butterfly wing shape evolution and gliding in ground effect.
    Cespedes A; Penz CM; DeVries PJ
    J Anim Ecol; 2015 May; 84(3):808-816. PubMed ID: 25484251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A songbird compensates for wing molt during escape flights by reducing the molt gap and increasing angle of attack.
    Tomotani BM; Muijres FT
    J Exp Biol; 2019 May; 222(Pt 10):. PubMed ID: 31085600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phylogeny and foraging behaviour shape modular morphological variation in bat humeri.
    López-Aguirre C; Hand SJ; Koyabu D; Tu VT; Wilson LAB
    J Anat; 2021 Jun; 238(6):1312-1329. PubMed ID: 33372711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring morphological generality in the Old World monkey postcranium using an ecomorphological framework.
    Elton S; Jansson AU; Meloro C; Louys J; Plummer T; Bishop LC
    J Anat; 2016 Apr; 228(4):534-60. PubMed ID: 26791626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards a phylogenetic framework for the evolution of shakes, rattles, and rolls in Myiarchus tyrant-flycatchers (Aves: Passeriformes: Tyrannidae).
    Joseph L; Wilke T; Bermingham E; Alpers D; Ricklefs R
    Mol Phylogenet Evol; 2004 Apr; 31(1):139-52. PubMed ID: 15019615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological response of songbirds to 100 years of landscape change in North America.
    Desrochers A
    Ecology; 2010 Jun; 91(6):1577-82. PubMed ID: 20583699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phylogenetics and ecomorphology of emarginate primary feathers.
    Klaassen van Oorschot B; Tang HK; Tobalske BW
    J Morphol; 2017 Jul; 278(7):936-947. PubMed ID: 28523646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation between wing bone microstructure and different flight styles: The case of the griffon vulture (gyps fulvus) and greater flamingo (phoenicopterus roseus).
    Frongia GN; Naitana S; Farina V; Gadau SD; Stefano MD; Muzzeddu M; Leoni G; Zedda M
    J Anat; 2021 Jul; 239(1):59-69. PubMed ID: 33650143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone histological correlates of soaring and high-frequency flapping flight in the furculae of birds.
    Mitchell J; Legendre LJ; Lefèvre C; Cubo J
    Zoology (Jena); 2017 Jun; 122():90-99. PubMed ID: 28495051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous effects of phylogenetic niche conservatism and competition on avian community structure.
    Lovette IJ; Hochachka WM
    Ecology; 2006 Jul; 87(7 Suppl):S14-28. PubMed ID: 16922299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Quantitative and Comparative Analysis of the Muscle Architecture of the Forelimb Myology of Diurnal Birds of Prey (Order Accipitriformes and Falconiformes).
    Bribiesca-Contreras F; Parslew B; Sellers WI
    Anat Rec (Hoboken); 2019 Oct; 302(10):1808-1823. PubMed ID: 31177616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogenetic and kinematic constraints on avian flight signals.
    Berg KS; Delgado S; Mata-Betancourt A
    Proc Biol Sci; 2019 Sep; 286(1911):20191083. PubMed ID: 31530147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone laminarity in the avian forelimb skeleton and its relationship to flight mode: testing functional interpretations.
    Simons EL; O'connor PM
    Anat Rec (Hoboken); 2012 Mar; 295(3):386-96. PubMed ID: 22241723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Convergent evolution in dippers (Aves, Cinclidae): The only wing-propelled diving songbirds.
    Smith NA; Koeller KL; Clarke JA; Ksepka DT; Mitchell JS; Nabavizadeh A; Ridgley RC; Witmer LM
    Anat Rec (Hoboken); 2022 Jul; 305(7):1563-1591. PubMed ID: 34813153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary constraints in hind wing shape in Chinese dung beetles (Coleoptera: Scarabaeinae).
    Bai M; McCullough E; Song KQ; Liu WG; Yang XK
    PLoS One; 2011; 6(6):e21600. PubMed ID: 21738727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive processes drive ecomorphological convergent evolution in antwrens (Thamnophilidae).
    Bravo GA; Remsen JV; Brumfield RT
    Evolution; 2014 Oct; 68(10):2757-74. PubMed ID: 25135629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.