These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 23576400)

  • 41. An investigation of chemical and electrochemical conversion of SILAR grown Mn
    Desai MA; Vedpathak AS; Bhapkar AR; Saratale GD; Sartale SD
    J Environ Manage; 2021 Dec; 299():113564. PubMed ID: 34461462
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Asymmetric supercapacitors with high energy densities.
    Shi Z; Chu W; Hou Y; Gao Y; Yang N
    Nanoscale; 2019 Jun; 11(24):11946-11955. PubMed ID: 31188368
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Redox-exchange induced heterogeneous RuO2-conductive polymer nanowires.
    Gui Z; Duay J; Hu J; Lee SB
    Phys Chem Chem Phys; 2014 Jun; 16(24):12332-40. PubMed ID: 24824847
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dioxythiophene-based polymer electrodes for supercapacitor modules.
    Liu DY; Reynolds JR
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3586-93. PubMed ID: 21090685
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior.
    Yan J; Khoo E; Sumboja A; Lee PS
    ACS Nano; 2010 Jul; 4(7):4247-55. PubMed ID: 20593844
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Self-supported supercapacitor membrane through incorporating MnO2 nanowires into carbon nanotube networks.
    Fang Y; Liu J; Li J
    J Nanosci Nanotechnol; 2010 Aug; 10(8):5099-105. PubMed ID: 21125856
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Facile hydrothermal synthesis of porous TiO2 nanowire electrodes with high-rate capability for Li ion batteries.
    Shim HW; Lee DK; Cho IS; Hong KS; Kim DW
    Nanotechnology; 2010 Jun; 21(25):255706. PubMed ID: 20516576
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hierarchical ZnCo2 O4 @NiCo2 O4 Core-Sheath Nanowires: Bifunctionality towards High-Performance Supercapacitors and the Oxygen-Reduction Reaction.
    Huang Y; Miao YE; Lu H; Liu T
    Chemistry; 2015 Jul; 21(28):10100-8. PubMed ID: 26061603
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors.
    Ye JS; Cui HF; Liu X; Lim TM; Zhang WD; Sheu FS
    Small; 2005 May; 1(5):560-5. PubMed ID: 17193486
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Controllable synthesis of mesoporous Co3O4 nanostructures with tunable morphology for application in supercapacitors.
    Xiong S; Yuan C; Zhang X; Xi B; Qian Y
    Chemistry; 2009; 15(21):5320-6. PubMed ID: 19350591
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of cobalt doping on the electrochemical performance of trimanganese tetraoxide.
    Shunmugapriya B; Rose A; Maiyalagan T; Vijayakumar T
    Nanotechnology; 2020 Apr; 31(28):285401. PubMed ID: 32203945
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Toward Low-Cost and Sustainable Supercapacitor Electrode Processing: Simultaneous Carbon Grafting and Coating of Mixed-Valence Metal Oxides by Fast Annealing.
    Malaie K; Ganjali MR; Soavi F
    Front Chem; 2019; 7():25. PubMed ID: 30788338
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Stereolithography-Derived Three-Dimensional Pyrolytic Carbon/Mn
    Rezaei B; Hansen TW; Keller SS
    ACS Appl Nano Mater; 2022 Feb; 5(2):1808-1819. PubMed ID: 35243211
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Investigation on the Voltage Hysteresis of Mn
    Lee YT; Kuo CT; Yew TR
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):570-579. PubMed ID: 33370086
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Carbon-coated LiCrTiO4 electrode material promoting phase transition to reduce asymmetric polarization for lithium-ion batteries.
    Yang J; Yan B; Ye J; Li X; Liu Y; You H
    Phys Chem Chem Phys; 2014 Feb; 16(7):2882-91. PubMed ID: 24424779
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structure-tunable Mn
    Hu B; Wang Y; Shang X; Xu K; Yang J; Huang M; Liu J
    J Colloid Interface Sci; 2021 Jan; 581(Pt A):66-75. PubMed ID: 32768735
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nanoscale Carbon Modified α-MnO
    Vigil JA; Lambert TN; Duay J; Delker CJ; Beechem TE; Swartzentruber BS
    ACS Appl Mater Interfaces; 2018 Jan; 10(2):2040-2050. PubMed ID: 29266915
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cell voltage versus electrode potential range in aqueous supercapacitors.
    Dai Z; Peng C; Chae JH; Ng KC; Chen GZ
    Sci Rep; 2015 Apr; 5():9854. PubMed ID: 25897670
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Functional porous carbon/nickel oxide nanocomposites as binder-free electrodes for supercapacitors.
    Madhu R; Veeramani V; Chen SM; Veerakumar P; Liu SB
    Chemistry; 2015 May; 21(22):8200-6. PubMed ID: 25882793
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Large-scale preparation of shape controlled SnO and improved capacitance for supercapacitors: from nanoclusters to square microplates.
    Wang L; Ji H; Zhu F; Chen Z; Yang Y; Jiang X; Pinto J; Yang G
    Nanoscale; 2013 Aug; 5(16):7613-21. PubMed ID: 23842544
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.