BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 23576435)

  • 1. Auxiliary KChIP4a suppresses A-type K+ current through endoplasmic reticulum (ER) retention and promoting closed-state inactivation of Kv4 channels.
    Tang YQ; Liang P; Zhou J; Lu Y; Lei L; Bian X; Wang K
    J Biol Chem; 2013 May; 288(21):14727-41. PubMed ID: 23576435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple Kv channel-interacting proteins contain an N-terminal transmembrane domain that regulates Kv4 channel trafficking and gating.
    Jerng HH; Pfaffinger PJ
    J Biol Chem; 2008 Dec; 283(51):36046-59. PubMed ID: 18957440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional rescue of Kv4.3 channel tetramerization mutants by KChIP4a.
    Liang P; Chen H; Cui Y; Lei L; Wang K
    Biophys J; 2010 Jun; 98(12):2867-76. PubMed ID: 20550899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The tetramerization domain potentiates Kv4 channel function by suppressing closed-state inactivation.
    Tang YQ; Zhou JH; Yang F; Zheng J; Wang K
    Biophys J; 2014 Sep; 107(5):1090-1104. PubMed ID: 25185545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural Insights into KChIP4a Modulation of Kv4.3 Inactivation.
    Liang P; Wang H; Chen H; Cui Y; Gu L; Chai J; Wang K
    J Biol Chem; 2009 Feb; 284(8):4960-7. PubMed ID: 19109250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elimination of fast inactivation in Kv4 A-type potassium channels by an auxiliary subunit domain.
    Holmqvist MH; Cao J; Hernandez-Pineda R; Jacobson MD; Carroll KI; Sung MA; Betty M; Ge P; Gilbride KJ; Brown ME; Jurman ME; Lawson D; Silos-Santiago I; Xie Y; Covarrubias M; Rhodes KJ; Distefano PS; An WF
    Proc Natl Acad Sci U S A; 2002 Jan; 99(2):1035-40. PubMed ID: 11805342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis for modulation of Kv4 K+ channels by auxiliary KChIP subunits.
    Wang H; Yan Y; Liu Q; Huang Y; Shen Y; Chen L; Chen Y; Yang Q; Hao Q; Wang K; Chai J
    Nat Neurosci; 2007 Jan; 10(1):32-9. PubMed ID: 17187064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fundamental role for KChIPs in determining the molecular properties and trafficking of Kv4.2 potassium channels.
    Shibata R; Misonou H; Campomanes CR; Anderson AE; Schrader LA; Doliveira LC; Carroll KI; Sweatt JD; Rhodes KJ; Trimmer JS
    J Biol Chem; 2003 Sep; 278(38):36445-54. PubMed ID: 12829703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-assembly of Kv4 {alpha} subunits with K+ channel-interacting protein 2 stabilizes protein expression and promotes surface retention of channel complexes.
    Foeger NC; Marionneau C; Nerbonne JM
    J Biol Chem; 2010 Oct; 285(43):33413-33422. PubMed ID: 20709747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different KChIPs compete for heteromultimeric assembly with pore-forming Kv4 subunits.
    Zhou J; Tang Y; Zheng Q; Li M; Yuan T; Chen L; Huang Z; Wang K
    Biophys J; 2015 Jun; 108(11):2658-69. PubMed ID: 26039167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A polybasic motif in alternatively spliced KChIP2 isoforms prevents Ca
    Murphy JG; Hoffman DA
    J Biol Chem; 2019 Mar; 294(10):3683-3695. PubMed ID: 30622142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. KChIP4a regulates Kv4.2 channel trafficking through PKA phosphorylation.
    Lin L; Sun W; Wikenheiser AM; Kung F; Hoffman DA
    Mol Cell Neurosci; 2010 Mar; 43(3):315-25. PubMed ID: 20045463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions of KChIP4a and its mutants with Ca2+ or Kv4.3 N-terminus by affinity capillary electrophoresis.
    Li M; Lei L; Jia L; Ling X; Zhang J; Zhao Y; Wang K
    Anal Biochem; 2014 Mar; 449():99-105. PubMed ID: 24361715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR analysis of KChIP4a reveals structural basis for control of surface expression of Kv4 channel complexes.
    Schwenk J; Zolles G; Kandias NG; Neubauer I; Kalbacher H; Covarrubias M; Fakler B; Bentrop D
    J Biol Chem; 2008 Jul; 283(27):18937-46. PubMed ID: 18458082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis of gating modulation of Kv4 channel complexes.
    Kise Y; Kasuya G; Okamoto HH; Yamanouchi D; Kobayashi K; Kusakizako T; Nishizawa T; Nakajo K; Nureki O
    Nature; 2021 Nov; 599(7883):158-164. PubMed ID: 34552243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Modulation of Kv4 channels by KChIPs clamping].
    Cui YY; Wang KW
    Sheng Li Ke Xue Jin Zhan; 2009 Jan; 40(1):9-13. PubMed ID: 19408696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Convergent modulation of Kv4.2 channel alpha subunits by structurally distinct DPPX and KChIP auxiliary subunits.
    Seikel E; Trimmer JS
    Biochemistry; 2009 Jun; 48(24):5721-30. PubMed ID: 19441798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The stoichiometry and biophysical properties of the Kv4 potassium channel complex with K+ channel-interacting protein (KChIP) subunits are variable, depending on the relative expression level.
    Kitazawa M; Kubo Y; Nakajo K
    J Biol Chem; 2014 Jun; 289(25):17597-609. PubMed ID: 24811166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional stoichiometry underlying KChIP regulation of Kv4.2 functional expression.
    Kunjilwar K; Qian Y; Pfaffinger PJ
    J Neurochem; 2013 Aug; 126(4):462-72. PubMed ID: 23692269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibitory effects of polyunsaturated fatty acids on Kv4/KChIP potassium channels.
    Boland LM; Drzewiecki MM; Timoney G; Casey E
    Am J Physiol Cell Physiol; 2009 May; 296(5):C1003-14. PubMed ID: 19261906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.