These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 23576578)
1. Angiotensin II activates NF-κB through AT1A receptor recruitment of β-arrestin in cultured rat vascular smooth muscle cells. Morinelli TA; Lee MH; Kendall RT; Luttrell LM; Walker LP; Ullian ME Am J Physiol Cell Physiol; 2013 Jun; 304(12):C1176-86. PubMed ID: 23576578 [TBL] [Abstract][Full Text] [Related]
2. Clathrin-dependent internalization of the angiotensin II AT₁A receptor links receptor internalization to COX-2 protein expression in rat aortic vascular smooth muscle cells. Morinelli TA; Walker LP; Velez JC; Ullian ME Eur J Pharmacol; 2015 Feb; 748():143-8. PubMed ID: 25542758 [TBL] [Abstract][Full Text] [Related]
3. Independent beta-arrestin2 and Gq/protein kinase Czeta pathways for ERK stimulated by angiotensin type 1A receptors in vascular smooth muscle cells converge on transactivation of the epidermal growth factor receptor. Kim J; Ahn S; Rajagopal K; Lefkowitz RJ J Biol Chem; 2009 May; 284(18):11953-62. PubMed ID: 19254952 [TBL] [Abstract][Full Text] [Related]
4. COX-2 expression stimulated by Angiotensin II depends upon AT1 receptor internalization in vascular smooth muscle cells. Morinelli TA; Walker LP; Ullian ME Biochim Biophys Acta; 2008 Jun; 1783(6):1048-54. PubMed ID: 18267125 [TBL] [Abstract][Full Text] [Related]
5. Angiotensin IV activates the nuclear transcription factor-kappaB and related proinflammatory genes in vascular smooth muscle cells. Esteban V; Ruperez M; Sánchez-López E; Rodríguez-Vita J; Lorenzo O; Demaegdt H; Vanderheyden P; Egido J; Ruiz-Ortega M Circ Res; 2005 May; 96(9):965-73. PubMed ID: 15831814 [TBL] [Abstract][Full Text] [Related]
6. Angiotensin II activates nuclear transcription factor-kappaB in aorta of normal rats and in vascular smooth muscle cells of AT1 knockout mice. Ruiz-Ortega M; Lorenzo O; Rupérez M; Suzuki Y; Egido J Nephrol Dial Transplant; 2001; 16 Suppl 1():27-33. PubMed ID: 11369817 [TBL] [Abstract][Full Text] [Related]
7. Angiotensin II activates nuclear transcription factor kappaB through AT(1) and AT(2) in vascular smooth muscle cells: molecular mechanisms. Ruiz-Ortega M; Lorenzo O; Rupérez M; König S; Wittig B; Egido J Circ Res; 2000 Jun; 86(12):1266-72. PubMed ID: 10864918 [TBL] [Abstract][Full Text] [Related]
8. β-Arrestin regulation of myosin light chain phosphorylation promotes AT1aR-mediated cell contraction and migration. Simard E; Kovacs JJ; Miller WE; Kim J; Grandbois M; Lefkowitz RJ PLoS One; 2013; 8(11):e80532. PubMed ID: 24255721 [TBL] [Abstract][Full Text] [Related]
9. Dual pathways for nuclear factor kappaB activation by angiotensin II in vascular smooth muscle: phosphorylation of p65 by IkappaB kinase and ribosomal kinase. Zhang L; Cheng J; Ma Y; Thomas W; Zhang J; Du J Circ Res; 2005 Nov; 97(10):975-82. PubMed ID: 16224066 [TBL] [Abstract][Full Text] [Related]
10. Pioglitazone reduces angiotensin II-induced COX-2 expression through inhibition of ROS production and ET-1 transcription in vascular cells from spontaneously hypertensive rats. Pérez-Girón JV; Palacios R; Martín A; Hernanz R; Aguado A; Martínez-Revelles S; Barrús MT; Salaices M; Alonso MJ Am J Physiol Heart Circ Physiol; 2014 Jun; 306(11):H1582-93. PubMed ID: 24727493 [TBL] [Abstract][Full Text] [Related]
11. β-Arrestin-mediated Angiotensin II Signaling Controls the Activation of ARF6 Protein and Endocytosis in Migration of Vascular Smooth Muscle Cells. Charles R; Namkung Y; Cotton M; Laporte SA; Claing A J Biol Chem; 2016 Feb; 291(8):3967-81. PubMed ID: 26703465 [TBL] [Abstract][Full Text] [Related]
13. The beta-arrestin pathway-selective type 1A angiotensin receptor (AT1A) agonist [Sar1,Ile4,Ile8]angiotensin II regulates a robust G protein-independent signaling network. Kendall RT; Strungs EG; Rachidi SM; Lee MH; El-Shewy HM; Luttrell DK; Janech MG; Luttrell LM J Biol Chem; 2011 Jun; 286(22):19880-91. PubMed ID: 21502318 [TBL] [Abstract][Full Text] [Related]
14. Tetramethylpyrazine inhibits agiontensin II-induced nuclear factor-kappaB activation and bone morphogenetic protein-2 downregulation in rat vascular smooth muscle cells. Ren XY; Ruan QR; Zhu DH; Zhu M; Qu ZL; Lu J Sheng Li Xue Bao; 2007 Jun; 59(3):339-44. PubMed ID: 17579790 [TBL] [Abstract][Full Text] [Related]
15. Angiotensin II stimulates transcription of insulin-like growth factor I receptor in vascular smooth muscle cells: role of nuclear factor-kappaB. Ma Y; Zhang L; Peng T; Cheng J; Taneja S; Zhang J; Delafontaine P; Du J Endocrinology; 2006 Mar; 147(3):1256-63. PubMed ID: 16322063 [TBL] [Abstract][Full Text] [Related]
16. A new cellular signaling mechanism for angiotensin II activation of NF-kappaB: An IkappaB-independent, RSK-mediated phosphorylation of p65. Zhang L; Ma Y; Zhang J; Cheng J; Du J Arterioscler Thromb Vasc Biol; 2005 Jun; 25(6):1148-53. PubMed ID: 15802625 [TBL] [Abstract][Full Text] [Related]
17. RhoA mediates angiotensin II-induced phospho-Ser536 nuclear factor kappaB/RelA subunit exchange on the interleukin-6 promoter in VSMCs. Cui R; Tieu B; Recinos A; Tilton RG; Brasier AR Circ Res; 2006 Sep; 99(7):723-30. PubMed ID: 16960103 [TBL] [Abstract][Full Text] [Related]
18. Arrestin-dependent angiotensin AT1 receptor signaling regulates Akt and mTor-mediated protein synthesis. Kendall RT; Lee MH; Pleasant DL; Robinson K; Kuppuswamy D; McDermott PJ; Luttrell LM J Biol Chem; 2014 Sep; 289(38):26155-26166. PubMed ID: 25081544 [TBL] [Abstract][Full Text] [Related]
19. Regulation of inhibitory protein-kappaB and monocyte chemoattractant protein-1 by angiotensin II type 2 receptor-activated Src homology protein tyrosine phosphatase-1 in fetal vascular smooth muscle cells. Wu L; Iwai M; Li Z; Shiuchi T; Min LJ; Cui TX; Li JM; Okumura M; Nahmias C; Horiuchi M Mol Endocrinol; 2004 Mar; 18(3):666-78. PubMed ID: 14684844 [TBL] [Abstract][Full Text] [Related]
20. Angiotensin II enhances AT1-Nox1 binding and stimulates arterial smooth muscle cell migration and proliferation through AT1, Nox1, and interleukin-18. Valente AJ; Yoshida T; Murthy SN; Sakamuri SS; Katsuyama M; Clark RA; Delafontaine P; Chandrasekar B Am J Physiol Heart Circ Physiol; 2012 Aug; 303(3):H282-96. PubMed ID: 22636674 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]