These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 23576836)

  • 1. Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability.
    Erb KH; Haberl H; Plutzar C
    Energy Policy; 2012 Aug; 47(4):260-269. PubMed ID: 23576836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global bioenergy potentials from agricultural land in 2050: Sensitivity to climate change, diets and yields.
    Haberl H; Erb KH; Krausmann F; Bondeau A; Lauk C; Müller C; Plutzar C; Steinberger JK
    Biomass Bioenergy; 2011 Dec; 35(12):4753-4769. PubMed ID: 22211004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatially explicit LCA analysis of biodiversity losses due to different bioenergy policies in the European Union.
    Di Fulvio F; Forsell N; Korosuo A; Obersteiner M; Hellweg S
    Sci Total Environ; 2019 Feb; 651(Pt 1):1505-1516. PubMed ID: 30360280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alternative scenarios of bioenergy crop production in an agricultural landscape and implications for bird communities.
    Blank PJ; Williams CL; Sample DW; Meehan TD; Turner MG
    Ecol Appl; 2016 Jan; 26(1):42-54. PubMed ID: 27039508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of bioenergy on biodiversity arising from land-use change and crop type.
    Núñez-Regueiro MM; Siddiqui SF; Fletcher RJ
    Conserv Biol; 2021 Feb; 35(1):77-87. PubMed ID: 31854480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integral analysis of environmental and economic performance of combined agricultural intensification & bioenergy production in the Orinoquia region.
    Ramirez-Contreras NE; Fontanilla-Díaz CA; Pardo LE; Delgado T; Munar-Florez D; Wicke B; Ruíz-Delgado J; van der Hilst F; Garcia-Nuñez JA; Mosquera-Montoya M; Faaij APC
    J Environ Manage; 2022 Feb; 303():114137. PubMed ID: 34847366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Landscape patterns of bioenergy in a changing climate: implications for crop allocation and land-use competition.
    Graves RA; Pearson SM; Turner MG
    Ecol Appl; 2016 Mar; 26(2):515-29. PubMed ID: 27209792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Balance between climate change mitigation benefits and land use impacts of bioenergy: conservation implications for European birds.
    Meller L; Thuiller W; Pironon S; Barbet-Massin M; Hof A; Cabeza M
    Glob Change Biol Bioenergy; 2015 Jul; 7(4):741-751. PubMed ID: 26681982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trade-offs for food production, nature conservation and climate limit the terrestrial carbon dioxide removal potential.
    Boysen LR; Lucht W; Gerten D
    Glob Chang Biol; 2017 Oct; 23(10):4303-4317. PubMed ID: 28464416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions among bioenergy feedstock choices, landscape dynamics, and land use.
    Dale VH; Kline KL; Wright LL; Perlack RD; Downing M; Graham RL
    Ecol Appl; 2011 Jun; 21(4):1039-54. PubMed ID: 21774412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Winners and losers of national and global efforts to reconcile agricultural intensification and biodiversity conservation.
    Egli L; Meyer C; Scherber C; Kreft H; Tscharntke T
    Glob Chang Biol; 2018 May; 24(5):2212-2228. PubMed ID: 29389056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global cropland could be almost halved: Assessment of land saving potentials under different strategies and implications for agricultural markets.
    Schneider JM; Zabel F; Schünemann F; Delzeit R; Mauser W
    PLoS One; 2022; 17(2):e0263063. PubMed ID: 35192630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomass residues as twenty-first century bioenergy feedstock-a comparison of eight integrated assessment models.
    Hanssen SV; Daioglou V; Steinmann ZJN; Frank S; Popp A; Brunelle T; Lauri P; Hasegawa T; Huijbregts MAJ; Van Vuuren DP
    Clim Change; 2020; 163(3):1569-1586. PubMed ID: 33364667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural climate solutions versus bioenergy: Can carbon benefits of natural succession compete with bioenergy from short rotation coppice?
    Kalt G; Mayer A; Theurl MC; Lauk C; Erb KH; Haberl H
    Glob Change Biol Bioenergy; 2019 Nov; 11(11):1283-1297. PubMed ID: 31762785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing Regional-Scale Impacts of Short Rotation Coppices on Ecosystem Services by Modeling Land-Use Decisions.
    Schulze J; Frank K; Priess JA; Meyer MA
    PLoS One; 2016; 11(4):e0153862. PubMed ID: 27082742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioenergy potential of the United States constrained by satellite observations of existing productivity.
    Smith WK; Cleveland CC; Reed SC; Miller NL; Running SW
    Environ Sci Technol; 2012 Mar; 46(6):3536-44. PubMed ID: 22321165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomass for energy in the European Union - a review of bioenergy resource assessments.
    Bentsen NS; Felby C
    Biotechnol Biofuels; 2012 Apr; 5(1):25. PubMed ID: 22546368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling pollinator community response to contrasting bioenergy scenarios.
    Bennett AB; Meehan TD; Gratton C; Isaacs R
    PLoS One; 2014; 9(11):e110676. PubMed ID: 25365559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Food supply and bioenergy production within the global cropland planetary boundary.
    Henry RC; Engström K; Olin S; Alexander P; Arneth A; Rounsevell MDA
    PLoS One; 2018; 13(3):e0194695. PubMed ID: 29566091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated crop-livestock-bioenergy system brings co-benefits and trade-offs in mitigating the environmental impacts of Chinese agriculture.
    Xing J; Song J; Liu C; Yang W; Duan H; Yabar H; Ren J
    Nat Food; 2022 Dec; 3(12):1052-1064. PubMed ID: 37118306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.