These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 23577004)
1. Microbial mats: an ecological niche for fungi. Cantrell SA; Duval-Pérez L Front Microbiol; 2012; 3():424. PubMed ID: 23577004 [TBL] [Abstract][Full Text] [Related]
2. Fungal communities of young and mature hypersaline microbial mats. Cantrell SA; Tkavc R; Gunde-Cimerman N; Zalar P; Acevedo M; Báez-Félix C Mycologia; 2013; 105(4):827-36. PubMed ID: 23709488 [TBL] [Abstract][Full Text] [Related]
3. [Airborne fungal community composition in indoor environments in Beijing]. Fang ZG; Ouyang ZY; Liu P; Sun L; Wang XY Huan Jing Ke Xue; 2013 May; 34(5):2031-7. PubMed ID: 23914564 [TBL] [Abstract][Full Text] [Related]
4. Airborne fungi spores distribution in various locations in Lagos, Nigeria. Odebode A; Adekunle A; Stajich J; Adeonipekun P Environ Monit Assess; 2020 Jan; 192(2):87. PubMed ID: 31900675 [TBL] [Abstract][Full Text] [Related]
5. Diversity of epiphytic fungi on the surface of Kyoho grape berries during ripening process in summer and winter at Nanning region, Guangxi, China. Ding S; Li N; Cao M; Huang Q; Chen G; Xie S; Zhang J; Cheng G; Li W Fungal Biol; 2019 Apr; 123(4):283-289. PubMed ID: 30928037 [TBL] [Abstract][Full Text] [Related]
6. Functional Stability and Community Dynamics during Spring and Autumn Seasons Over 3 Years in Camargue Microbial Mats. Berlanga M; Palau M; Guerrero R Front Microbiol; 2017; 8():2619. PubMed ID: 29312277 [TBL] [Abstract][Full Text] [Related]
7. Characterization of fungi from hypersaline environments of solar salterns using morphological and molecular techniques. Cantrell SA; Casillas-Martínez L; Molina M Mycol Res; 2006 Aug; 110(Pt 8):962-70. PubMed ID: 16904880 [TBL] [Abstract][Full Text] [Related]
8. The Abundance and Diversity of Fungi in a Hypersaline Microbial Mat from Guerrero Negro, Baja California, México. Maza-Márquez P; Lee MD; Bebout BM J Fungi (Basel); 2021 Mar; 7(3):. PubMed ID: 33809206 [TBL] [Abstract][Full Text] [Related]
9. Design and composition of synthetic fungal-bacterial microbial consortia that improve lignocellulolytic enzyme activity. Hu J; Xue Y; Guo H; Gao MT; Li J; Zhang S; Tsang YF Bioresour Technol; 2017 Mar; 227():247-255. PubMed ID: 28039824 [TBL] [Abstract][Full Text] [Related]
10. [Ecological distributions of airborne fungi in outdoor environments in Beijing, China]. Hu LF; Fang ZG; Ouyang ZY; Liao XL; Lin XQ; Wang XK Huan Jing Ke Xue; 2005 Sep; 26(5):22-7. PubMed ID: 16366464 [TBL] [Abstract][Full Text] [Related]
11. Fungal density in the sands of the Mediterranean coast beaches. Larrondo JV; Calvo MA Mycopathologia; 1989 Dec; 108(3):185-93. PubMed ID: 2615805 [TBL] [Abstract][Full Text] [Related]
12. Conversion of ammonia-pretreated switchgrass to biofuel precursors by bacterial-fungal consortia under solid-state and submerged-state cultivation. Jain A; Pelle HS; Baughman WH; Henson JM J Appl Microbiol; 2017 Apr; 122(4):953-963. PubMed ID: 27626760 [TBL] [Abstract][Full Text] [Related]
13. Microscopic fungi recovered from honey and their toxinogenity. Kačániová M; Kňazovická V; Felšöciová S; Rovná K J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(11):1659-64. PubMed ID: 22702826 [TBL] [Abstract][Full Text] [Related]
14. Seasonal distribution of Alternaria, Aspergillus, Cladosporium and Penicillium species isolated in homes of fungal allergic patients. de Ana SG; Torres-Rodríguez JM; Ramírez EA; García SM; Belmonte-Soler J J Investig Allergol Clin Immunol; 2006; 16(6):357-63. PubMed ID: 17153883 [TBL] [Abstract][Full Text] [Related]
15. Different inocula produce distinctive microbial consortia with similar lignocellulose degradation capacity. Cortes-Tolalpa L; Jiménez DJ; de Lima Brossi MJ; Salles JF; van Elsas JD Appl Microbiol Biotechnol; 2016 Sep; 100(17):7713-25. PubMed ID: 27170322 [TBL] [Abstract][Full Text] [Related]
16. Influence of environmental factors on airborne fungi in houses of Santa Fe City, Argentina. Basilico Mde L; Chiericatti C; Aringoli EE; Althaus RL; Basilico JC Sci Total Environ; 2007 Apr; 376(1-3):143-50. PubMed ID: 17320936 [TBL] [Abstract][Full Text] [Related]
17. Soil-Derived Microbial Consortia Enriched with Different Plant Biomass Reveal Distinct Players Acting in Lignocellulose Degradation. de Lima Brossi MJ; Jiménez DJ; Cortes-Tolalpa L; van Elsas JD Microb Ecol; 2016 Apr; 71(3):616-27. PubMed ID: 26487437 [TBL] [Abstract][Full Text] [Related]
18. Diversity and pharmaceutical screening of fungi from benthic mats of Antarctic lakes. Brunati M; Rojas JL; Sponga F; Ciciliato I; Losi D; Göttlich E; de Hoog S; Genilloud O; Marinelli F Mar Genomics; 2009 Mar; 2(1):43-50. PubMed ID: 21798171 [TBL] [Abstract][Full Text] [Related]
19. Microbial diversity during maturation and natural processing of coffee cherries of Coffea arabica in Brazil. Silv CF; Schwan RF; Sousa Dias ES; Wheals AE Int J Food Microbiol; 2000 Sep; 60(2-3):251-60. PubMed ID: 11016614 [TBL] [Abstract][Full Text] [Related]
20. Season and tissue type affect fungal endophyte communities of the Indian medicinal plant Tinospora cordifolia more strongly than geographic location. Mishra A; Gond SK; Kumar A; Sharma VK; Verma SK; Kharwar RN; Sieber TN Microb Ecol; 2012 Aug; 64(2):388-98. PubMed ID: 22430503 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]