These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 23577106)

  • 1. Hidden information revealed by optimal community structure from a protein-complex bipartite network improves protein function prediction.
    Lee J; Lee J
    PLoS One; 2013; 8(4):e60372. PubMed ID: 23577106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topological and functional comparison of community detection algorithms in biological networks.
    Rahiminejad S; Maurya MR; Subramaniam S
    BMC Bioinformatics; 2019 Apr; 20(1):212. PubMed ID: 31029085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multi-network clustering method for detecting protein complexes from multiple heterogeneous networks.
    Ou-Yang L; Yan H; Zhang XF
    BMC Bioinformatics; 2017 Dec; 18(Suppl 13):463. PubMed ID: 29219066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient and accurate Greedy Search Methods for mining functional modules in protein interaction networks.
    He J; Li C; Ye B; Zhong W
    BMC Bioinformatics; 2012 Jun; 13 Suppl 10(Suppl 10):S19. PubMed ID: 22759424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel method to predict essential proteins based on tensor and HITS algorithm.
    Zhang Z; Luo Y; Hu S; Li X; Wang L; Zhao B
    Hum Genomics; 2020 Apr; 14(1):14. PubMed ID: 32252824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An iteration method for identifying yeast essential proteins from heterogeneous network.
    Zhao B; Zhao Y; Zhang X; Zhang Z; Zhang F; Wang L
    BMC Bioinformatics; 2019 Jun; 20(1):355. PubMed ID: 31234779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying protein complexes based on node embeddings obtained from protein-protein interaction networks.
    Liu X; Yang Z; Sang S; Zhou Z; Wang L; Zhang Y; Lin H; Wang J; Xu B
    BMC Bioinformatics; 2018 Sep; 19(1):332. PubMed ID: 30241459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using PPI network autocorrelation in hierarchical multi-label classification trees for gene function prediction.
    Stojanova D; Ceci M; Malerba D; Dzeroski S
    BMC Bioinformatics; 2013 Sep; 14():285. PubMed ID: 24070402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An overlapping module identification method in protein-protein interaction networks.
    Wang X; Li L; Cheng Y
    BMC Bioinformatics; 2012 May; 13 Suppl 7(Suppl 7):S4. PubMed ID: 22595001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein complex prediction in interaction network based on network motif.
    Patra S; Mohapatra A
    Comput Biol Chem; 2020 Dec; 89():107399. PubMed ID: 33152665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NPF:network propagation for protein function prediction.
    Zhao B; Zhang Z; Jiang M; Hu S; Luo Y; Wang L
    BMC Bioinformatics; 2020 Aug; 21(1):355. PubMed ID: 32787776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying essential proteins based on sub-network partition and prioritization by integrating subcellular localization information.
    Li M; Li W; Wu FX; Pan Y; Wang J
    J Theor Biol; 2018 Jun; 447():65-73. PubMed ID: 29571709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A protein network refinement method based on module discovery and biological information.
    Pan L; Wang H; Yang B; Li W
    BMC Bioinformatics; 2024 Apr; 25(1):157. PubMed ID: 38643108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective comparative analysis of protein-protein interaction networks by measuring the steady-state network flow using a Markov model.
    Jeong H; Qian X; Yoon BJ
    BMC Bioinformatics; 2016 Oct; 17(Suppl 13):395. PubMed ID: 27766938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of dynamic probabilistic protein interaction networks for protein complex identification.
    Zhang Y; Lin H; Yang Z; Wang J
    BMC Bioinformatics; 2016 Apr; 17(1):186. PubMed ID: 27117946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of essential proteins based on ranking edge-weights in protein-protein interaction networks.
    Wang Y; Sun H; Du W; Blanzieri E; Viero G; Xu Y; Liang Y
    PLoS One; 2014; 9(9):e108716. PubMed ID: 25268881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting Protein-Protein Interactions via Gated Graph Attention Signed Network.
    Xiang Z; Gong W; Li Z; Yang X; Wang J; Wang H
    Biomolecules; 2021 May; 11(6):. PubMed ID: 34071437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Central Edge Selection Based Overlapping Community Detection Algorithm for the Detection of Overlapping Structures in Protein⁻Protein Interaction Networks.
    Zhang F; Ma A; Wang Z; Ma Q; Liu B; Huang L; Wang Y
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30322177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of essential proteins based on subcellular localization and gene expression correlation.
    Fan Y; Tang X; Hu X; Wu W; Ping Q
    BMC Bioinformatics; 2017 Dec; 18(Suppl 13):470. PubMed ID: 29219067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure discovery in PPI networks using pattern-based network decomposition.
    Bachman P; Liu Y
    Bioinformatics; 2009 Jul; 25(14):1814-21. PubMed ID: 19447784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.