These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 2357715)
1. Cerebral energy metabolism in experimental canine hydrocephalus. Tamaki N; Yasuda M; Matsumoto S; Yamamoto T; Iriguchi N Childs Nerv Syst; 1990 May; 6(3):172-8. PubMed ID: 2357715 [TBL] [Abstract][Full Text] [Related]
2. Cerebral metabolism in experimental hydrocephalus: an in vivo 1H and 31P magnetic resonance spectroscopy study. Braun KP; van Eijsden P; Vandertop WP; de Graaf RA; Gooskens RH; Tulleken KA; Nicolay K J Neurosurg; 1999 Oct; 91(4):660-8. PubMed ID: 10507389 [TBL] [Abstract][Full Text] [Related]
3. [Experimental study on pathophysiology and treatment of congenital hydrocephalus evaluated by magnetic resonance imaging and magnetic resonance spectroscopy]. Minamikawa J Nihon Geka Hokan; 1992 Jan; 61(1):35-61. PubMed ID: 1530381 [TBL] [Abstract][Full Text] [Related]
4. High-energy phosphate metabolism in a neonatal model of hydrocephalus before and after shunting. da Silva MC; Drake JM; Lemaire C; Cross A; Tuor UI J Neurosurg; 1994 Oct; 81(4):544-53. PubMed ID: 7931588 [TBL] [Abstract][Full Text] [Related]
5. Changes in free water content and energy metabolism of the brain in experimental hydrocephalus. Tamaki N; Nagashima T; Ehara K; Kimura M; Matsumoto S; Iriguchi N Acta Neurochir Suppl (Wien); 1990; 51():354-6. PubMed ID: 2089937 [TBL] [Abstract][Full Text] [Related]
7. Metabolite changes in the cerebral cortex of treated and untreated infant hydrocephalic rats studied using in vitro 31P-NMR spectroscopy. Harris NG; Plant HD; Briggs RW; Jones HC J Neurochem; 1996 Nov; 67(5):2030-8. PubMed ID: 8863510 [TBL] [Abstract][Full Text] [Related]
8. In vivo 1H MR spectroscopic imaging and diffusion weighted MRI in experimental hydrocephalus. Braun KP; de Graaf RA; Vandertop WP; Gooskens RH; Tulleken KA; Nicolay K Magn Reson Med; 1998 Dec; 40(6):832-9. PubMed ID: 9840827 [TBL] [Abstract][Full Text] [Related]
9. Cerebral ischemia and white matter edema in experimental hydrocephalus: a combined in vivo MRI and MRS study. Braun KP; Dijkhuizen RM; de Graaf RA; Nicolay K; Vandertop WP; Gooskens RH; Tulleken KA Brain Res; 1997 May; 757(2):295-8. PubMed ID: 9200761 [TBL] [Abstract][Full Text] [Related]
10. Gray matter metabolism in acute and chronic hydrocephalus. Kondziella D; Eyjolfsson EM; Saether O; Sonnewald U; Risa O Neuroscience; 2009 Mar; 159(2):570-7. PubMed ID: 19171182 [TBL] [Abstract][Full Text] [Related]
11. [Alteration of atrial natriuretic peptide and cyclic GMP in cerebrospinal fluid in canine kaolin-induced hydrocephalus]. Fukushima T No To Shinkei; 1992 May; 44(5):457-62. PubMed ID: 1325821 [TBL] [Abstract][Full Text] [Related]
12. Energy metabolism in kaolin-induced hydrocephalic rat brain. Assessed by phosphorus (31P) magnetic resonance spectroscopy and the diversity of lactate-dehydrogenase and its isoenzyme patterns. Matsumae M; Sogabe T; Miura I; Sato O Childs Nerv Syst; 1990 Nov; 6(7):392-6. PubMed ID: 1669248 [TBL] [Abstract][Full Text] [Related]
13. 1H magnetic resonance spectroscopy in human hydrocephalus. Braun KP; Gooskens RH; Vandertop WP; Tulleken CA; van der Grond J J Magn Reson Imaging; 2003 Mar; 17(3):291-9. PubMed ID: 12594718 [TBL] [Abstract][Full Text] [Related]
14. Anaerobic glycolysis preceding white-matter destruction in experimental neonatal hydrocephalus. Chumas PD; Drake JM; Del Bigio MR; Da Silva M; Tuor UI J Neurosurg; 1994 Mar; 80(3):491-501. PubMed ID: 8113862 [TBL] [Abstract][Full Text] [Related]
15. Progressive changes in cortical metabolites at three stages of infantile hydrocephalus studied by in vitro NMR spectroscopy. Jones HC; Harris NG; Rocca JR; Andersohn RW J Neurotrauma; 1997 Sep; 14(9):587-602. PubMed ID: 9337122 [TBL] [Abstract][Full Text] [Related]
16. Experimental feline hydrocephalus. The role of biomechanical changes in ventricular enlargement in cats. Shapiro K; Takei F; Fried A; Kohn I J Neurosurg; 1985 Jul; 63(1):82-7. PubMed ID: 4009279 [TBL] [Abstract][Full Text] [Related]
17. Time course of intraventricular pressure change in a canine model of hydrocephalus: its relationship to sagittal sinus elastance. McCormick JM; Yamada K; Rekate HL; Miyake H Pediatr Neurosurg; 1992; 18(3):127-33. PubMed ID: 1457371 [TBL] [Abstract][Full Text] [Related]
18. Changes in the components and content of biological water in the brain of experimental hydrocephalic rabbits. Tamaki N; Yamashita H; Kimura M; Ehara K; Asada M; Nagashima T; Matsumoto S; Hashimoto M J Neurosurg; 1990 Aug; 73(2):274-8. PubMed ID: 2195141 [TBL] [Abstract][Full Text] [Related]
19. Cerebrospinal fluid and extracellular fluid: their relationship to pressure and duration of canine hydrocephalus. Page LK Childs Nerv Syst; 1985; 1(1):12-7. PubMed ID: 3986838 [TBL] [Abstract][Full Text] [Related]
20. A canine model of acute hydrocephalus with MR correlation. Vullo T; Manzo R; Gomez DG; Deck MD; Cahill PT AJNR Am J Neuroradiol; 1998; 19(6):1123-5. PubMed ID: 9672024 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]