BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 23578026)

  • 1. Form and function in cyclic peptide natural products: a pharmacokinetic perspective.
    Bockus AT; McEwen CM; Lokey RS
    Curr Top Med Chem; 2013; 13(7):821-36. PubMed ID: 23578026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural Proline-Rich Cyclopolypeptides from Marine Organisms: Chemistry, Synthetic Methodologies and Biological Status.
    Fang WY; Dahiya R; Qin HL; Mourya R; Maharaj S
    Mar Drugs; 2016 Oct; 14(11):. PubMed ID: 27792168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beyond cyclosporine A: conformation-dependent passive membrane permeabilities of cyclic peptide natural products.
    Ahlbach CL; Lexa KW; Bockus AT; Chen V; Crews P; Jacobson MP; Lokey RS
    Future Med Chem; 2015; 7(16):2121-30. PubMed ID: 26067057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclic peptide natural products chart the frontier of oral bioavailability in the pursuit of undruggable targets.
    Naylor MR; Bockus AT; Blanco MJ; Lokey RS
    Curr Opin Chem Biol; 2017 Jun; 38():141-147. PubMed ID: 28570865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On-resin N-methylation of cyclic peptides for discovery of orally bioavailable scaffolds.
    White TR; Renzelman CM; Rand AC; Rezai T; McEwen CM; Gelev VM; Turner RA; Linington RG; Leung SS; Kalgutkar AS; Bauman JN; Zhang Y; Liras S; Price DA; Mathiowetz AM; Jacobson MP; Lokey RS
    Nat Chem Biol; 2011 Sep; 7(11):810-7. PubMed ID: 21946276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Building upon Nature's Framework: Overview of Key Strategies Toward Increasing Drug-Like Properties of Natural Product Cyclopeptides and Macrocycles.
    Blanco MJ
    Methods Mol Biol; 2019; 2001():203-233. PubMed ID: 31134573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-permeable cyclic peptides from synthetic libraries inspired by natural products.
    Hewitt WM; Leung SS; Pye CR; Ponkey AR; Bednarek M; Jacobson MP; Lokey RS
    J Am Chem Soc; 2015 Jan; 137(2):715-21. PubMed ID: 25517352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction and screening of vast libraries of natural product-like macrocyclic peptides using in vitro display technologies.
    Bashiruddin NK; Suga H
    Curr Opin Chem Biol; 2015 Feb; 24():131-8. PubMed ID: 25483262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New Insights into the Biosynthetic Logic of Ribosomally Synthesized and Post-translationally Modified Peptide Natural Products.
    Ortega MA; van der Donk WA
    Cell Chem Biol; 2016 Jan; 23(1):31-44. PubMed ID: 26933734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geometrically Diverse Lariat Peptide Scaffolds Reveal an Untapped Chemical Space of High Membrane Permeability.
    Kelly CN; Townsend CE; Jain AN; Naylor MR; Pye CR; Schwochert J; Lokey RS
    J Am Chem Soc; 2021 Jan; 143(2):705-714. PubMed ID: 33381960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the chemical space of peptides for drug discovery: a focus on linear and cyclic penta-peptides.
    Díaz-Eufracio BI; Palomino-Hernández O; Houghten RA; Medina-Franco JL
    Mol Divers; 2018 May; 22(2):259-267. PubMed ID: 29446006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural Cyclic Peptides as an Attractive Modality for Therapeutics: A Mini Review.
    Abdalla MA; McGaw LJ
    Molecules; 2018 Aug; 23(8):. PubMed ID: 30127265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ribosomally-synthesised cyclic peptides from plants as drug leads and pharmaceutical scaffolds.
    Craik DJ; Lee MH; Rehm FBH; Tombling B; Doffek B; Peacock H
    Bioorg Med Chem; 2018 Jun; 26(10):2727-2737. PubMed ID: 28818463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constraining cyclic peptides to mimic protein structure motifs.
    Hill TA; Shepherd NE; Diness F; Fairlie DP
    Angew Chem Int Ed Engl; 2014 Nov; 53(48):13020-41. PubMed ID: 25287434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexibility versus Rigidity for Orally Bioavailable Cyclic Hexapeptides.
    Nielsen DS; Lohman RJ; Hoang HN; Hill TA; Jones A; Lucke AJ; Fairlie DP
    Chembiochem; 2015 Nov; 16(16):2289-93. PubMed ID: 26336864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural Simplification of Natural Products.
    Wang S; Dong G; Sheng C
    Chem Rev; 2019 Mar; 119(6):4180-4220. PubMed ID: 30730700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving on nature: making a cyclic heptapeptide orally bioavailable.
    Nielsen DS; Hoang HN; Lohman RJ; Hill TA; Lucke AJ; Craik DJ; Edmonds DJ; Griffith DA; Rotter CJ; Ruggeri RB; Price DA; Liras S; Fairlie DP
    Angew Chem Int Ed Engl; 2014 Nov; 53(45):12059-63. PubMed ID: 25219505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Orally Absorbed Cyclic Peptides.
    Nielsen DS; Shepherd NE; Xu W; Lucke AJ; Stoermer MJ; Fairlie DP
    Chem Rev; 2017 Jun; 117(12):8094-8128. PubMed ID: 28541045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Conformationally Restricted Cyclopropane Tethers with Three-Dimensional Structural Diversity Drastically Enhance the Cell Permeability of Cyclic Peptides.
    Matsui K; Kido Y; Watari R; Kashima Y; Yoshida Y; Shuto S
    Chemistry; 2017 Mar; 23(13):3034-3041. PubMed ID: 27878880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directing Biosynthesis: Practical Supply of Natural and Unnatural Cyanobactins.
    Sardar D; Tianero MD; Schmidt EW
    Methods Enzymol; 2016; 575():1-20. PubMed ID: 27417922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.