These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 23578030)

  • 1. Tuning nanopore formation of oligocholate macrocycles by carboxylic acid dimerization in lipid membranes.
    Widanapathirana L; Zhao Y
    J Org Chem; 2013 May; 78(9):4610-4. PubMed ID: 23578030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water-templated transmembrane nanopores from shape-persistent oligocholate macrocycles.
    Cho H; Widanapathirana L; Zhao Y
    J Am Chem Soc; 2011 Jan; 133(1):141-7. PubMed ID: 21142045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen bond-assisted macrocyclic oligocholate transporters in lipid membranes.
    Widanapathirana L; Li X; Zhao Y
    Org Biomol Chem; 2012 Jul; 10(26):5077-83. PubMed ID: 22627275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aromatically functionalized cyclic tricholate macrocycles: aggregation, transmembrane pore formation, flexibility, and cooperativity.
    Widanapathirana L; Zhao Y
    J Org Chem; 2012 May; 77(10):4679-87. PubMed ID: 22524459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Translocation of hydrophilic molecules across lipid bilayers by salt-bridged oligocholates.
    Cho H; Zhao Y
    Langmuir; 2011 Apr; 27(8):4936-44. PubMed ID: 21446684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aggregation and dynamics of oligocholate transporters in phospholipid bilayers revealed by solid-state NMR spectroscopy.
    Wang T; Widanapathirana L; Zhao Y; Hong M
    Langmuir; 2012 Dec; 28(49):17071-8. PubMed ID: 23153411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of amphiphile topology on the aggregation of oligocholates in lipid membranes: macrocyclic versus linear amphiphiles.
    Widanapathirana L; Zhao Y
    Langmuir; 2012 May; 28(21):8165-73. PubMed ID: 22563986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oligocholate foldamers as carriers for hydrophilic molecules across lipid bilayers.
    Zhang S; Zhao Y
    Chemistry; 2011 Oct; 17(44):12444-51. PubMed ID: 21935998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembling organic nanotubes with precisely defined, sub-nanometer pores: formation and mass transport characteristics.
    Gong B; Shao Z
    Acc Chem Res; 2013 Dec; 46(12):2856-66. PubMed ID: 23597055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cholate-derived amphiphilic molecular baskets as glucose transporters across lipid membranes.
    Cho H; Zhao Y
    Chem Commun (Camb); 2011 Aug; 47(31):8970-2. PubMed ID: 21698316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voltage Gating of a Biomimetic Nanopore: Electrowetting of a Hydrophobic Barrier.
    Trick JL; Song C; Wallace EJ; Sansom MS
    ACS Nano; 2017 Feb; 11(2):1840-1847. PubMed ID: 28141923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible oligocholate foldamers as membrane transporters and their guest-dependent transport mechanism.
    Zhang S; Zhao Y
    Org Biomol Chem; 2012 Jan; 10(2):260-6. PubMed ID: 22068436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transmembrane nanopores from porphyrin supramolecules.
    Satake A; Yamamura M; Oda M; Kobuke Y
    J Am Chem Soc; 2008 May; 130(20):6314-5. PubMed ID: 18439008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion permeation by a folded multiblock amphiphilic oligomer achieved by hierarchical construction of self-assembled nanopores.
    Muraoka T; Shima T; Hamada T; Morita M; Takagi M; Tabata KV; Noji H; Kinbara K
    J Am Chem Soc; 2012 Dec; 134(48):19788-94. PubMed ID: 23145887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformationally controlled oligocholate membrane transporters: learning through water play.
    Zhao Y; Cho H; Widanapathirana L; Zhang S
    Acc Chem Res; 2013 Dec; 46(12):2763-72. PubMed ID: 23537285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetic design and performance of polymerizable lipids.
    Cashion MP; Long TE
    Acc Chem Res; 2009 Aug; 42(8):1016-25. PubMed ID: 19453103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanopore sensors: from hybrid to abiotic systems.
    Kocer A; Tauk L; Déjardin P
    Biosens Bioelectron; 2012; 38(1):1-10. PubMed ID: 22749726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anion and carboxylic acid binding to monotopic and ditopic amidopyridine macrocycles.
    Korendovych IV; Cho M; Makhlynets OV; Butler PL; Staples RJ; Rybak-Akimova EV
    J Org Chem; 2008 Jul; 73(13):4771-82. PubMed ID: 18396906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tubular Unimolecular Transmembrane Channels: Construction Strategy and Transport Activities.
    Si W; Xin P; Li ZT; Hou JL
    Acc Chem Res; 2015 Jun; 48(6):1612-9. PubMed ID: 26017272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Naphthotubes: Macrocyclic Hosts with a Biomimetic Cavity Feature.
    Yang LP; Wang X; Yao H; Jiang W
    Acc Chem Res; 2020 Jan; 53(1):198-208. PubMed ID: 31858790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.