BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 23578619)

  • 1. Investigation of tocotrienol biosynthesis in rice (Oryza sativa L.).
    Matsuzuka K; Kimura E; Nakagawa K; Murata K; Kimura T; Miyazawa T
    Food Chem; 2013 Sep; 140(1-2):91-8. PubMed ID: 23578619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic and biochemical basis for alternative routes of tocotrienol biosynthesis for enhanced vitamin E antioxidant production.
    Zhang C; Cahoon RE; Hunter SC; Chen M; Han J; Cahoon EB
    Plant J; 2013 Feb; 73(4):628-39. PubMed ID: 23137278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vitamin E biosynthesis: functional characterization of the monocot homogentisate geranylgeranyl transferase.
    Yang W; Cahoon RE; Hunter SC; Zhang C; Han J; Borgschulte T; Cahoon EB
    Plant J; 2011 Jan; 65(2):206-17. PubMed ID: 21223386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content.
    Cahoon EB; Hall SE; Ripp KG; Ganzke TS; Hitz WD; Coughlan SJ
    Nat Biotechnol; 2003 Sep; 21(9):1082-7. PubMed ID: 12897790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-fertilization for enhancing tocotrienol biosynthesis in rice plants and QTL analysis of their F2 progenies.
    Sookwong P; Murata K; Nakagawa K; Shibata A; Kimura T; Yamaguchi M; Kojima Y; Miyazawa T
    J Agric Food Chem; 2009 Jun; 57(11):4620-5. PubMed ID: 19449811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antioxidant activity and inhibition of lipid peroxidation in germinating seeds of transgenic soybean expressing OsHGGT.
    Kim YH; Lee YY; Kim YH; Choi MS; Jeong KH; Lee SK; Seo MJ; Yun HT; Lee CK; Kim WH; Lee SC; Park SK; Park HM
    J Agric Food Chem; 2011 Jan; 59(2):584-91. PubMed ID: 21175184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression of HvHGGT Enhances Tocotrienol Levels and Antioxidant Activity in Barley.
    Chen J; Liu C; Shi B; Chai Y; Han N; Zhu M; Bian H
    J Agric Food Chem; 2017 Jun; 65(25):5181-5187. PubMed ID: 28581741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High expression of tocochromanol biosynthesis genes increases the vitamin E level in a new line of giant embryo rice.
    Wang X; Song YE; Li JY
    J Agric Food Chem; 2013 Jun; 61(24):5860-9. PubMed ID: 23738742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tocopherol and tocotrienol contents of different varieties of rice in Malaysia.
    Shammugasamy B; Ramakrishnan Y; Ghazali HM; Muhammad K
    J Sci Food Agric; 2015 Mar; 95(4):672-8. PubMed ID: 24841131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitation of tocotrienol and tocopherol in various rice brans.
    Sookwong P; Nakagawa K; Murata K; Kojima Y; Miyazawa T
    J Agric Food Chem; 2007 Jan; 55(2):461-6. PubMed ID: 17227080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice.
    Li M; Tang D; Wang K; Wu X; Lu L; Yu H; Gu M; Yan C; Cheng Z
    Plant Biotechnol J; 2011 Dec; 9(9):1002-13. PubMed ID: 21447055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of sucrose and abscisic acid interaction on sucrose synthase and its relationship to grain filling of rice (Oryza sativa L.).
    Tang T; Xie H; Wang Y; Lü B; Liang J
    J Exp Bot; 2009; 60(9):2641-52. PubMed ID: 19401410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient induction of melatonin biosynthesis in rice (Oryza sativa L.) during the reproductive stage.
    Park S; Le TN; Byeon Y; Kim YS; Back K
    J Pineal Res; 2013 Aug; 55(1):40-5. PubMed ID: 23110463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress.
    Peleg Z; Reguera M; Tumimbang E; Walia H; Blumwald E
    Plant Biotechnol J; 2011 Sep; 9(7):747-58. PubMed ID: 21284800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SALT-RESPONSIVE ERF1 is a negative regulator of grain filling and gibberellin-mediated seedling establishment in rice.
    Schmidt R; Schippers JH; Mieulet D; Watanabe M; Hoefgen R; Guiderdoni E; Mueller-Roeber B
    Mol Plant; 2014 Feb; 7(2):404-21. PubMed ID: 24046061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. iTRAQ-Based Quantitative Proteomics Analysis of Black Rice Grain Development Reveals Metabolic Pathways Associated with Anthocyanin Biosynthesis.
    Chen L; Huang Y; Xu M; Cheng Z; Zhang D; Zheng J
    PLoS One; 2016; 11(7):e0159238. PubMed ID: 27415428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A large increase in IAA during development of rice grains correlates with the expression of tryptophan aminotransferase OsTAR1 and a grain-specific YUCCA.
    Abu-Zaitoon YM; Bennett K; Normanly J; Nonhebel HM
    Physiol Plant; 2012 Dec; 146(4):487-99. PubMed ID: 22582989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetically engineered rice containing larger amounts of nicotianamine to enhance the antihypertensive effect.
    Usuda K; Wada Y; Ishimaru Y; Kobayashi T; Takahashi M; Nakanishi H; Nagato Y; Mori S; Nishizawa NK
    Plant Biotechnol J; 2009 Jan; 7(1):87-95. PubMed ID: 18823453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyamines and ethylene interact in rice grains in response to soil drying during grain filling.
    Chen T; Xu Y; Wang J; Wang Z; Yang J; Zhang J
    J Exp Bot; 2013 May; 64(8):2523-38. PubMed ID: 23606413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compensation and interaction between RISBZ1 and RPBF during grain filling in rice.
    Kawakatsu T; Yamamoto MP; Touno SM; Yasuda H; Takaiwa F
    Plant J; 2009 Sep; 59(6):908-20. PubMed ID: 19473328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.