These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 23579196)

  • 21. Quantum size effects on the optical properties of nc-Si QDs embedded in an a-SiOx matrix synthesized by spontaneous plasma processing.
    Das D; Samanta A
    Phys Chem Chem Phys; 2015 Feb; 17(7):5063-71. PubMed ID: 25598473
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Active doping of B in silicon nanostructures and development of a Si quantum dot solar cell.
    Hong SH; Kim YS; Lee W; Kim YH; Song JY; Jang JS; Park JH; Choi SH; Kim KJ
    Nanotechnology; 2011 Oct; 22(42):425203. PubMed ID: 21941033
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mutlicolor electroluminescent Si quantum dots embedded in SiOx thin film MOSLED with 2.4% external quantum efficiency.
    Cheng CH; Lien YC; Wu CL; Lin GR
    Opt Express; 2013 Jan; 21(1):391-403. PubMed ID: 23388932
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spatially confined synthesis of SiOx nano-rod with size-controlled Si quantum dots in nano-porous anodic aluminum oxide membrane.
    Pai YH; Lin GR
    Opt Express; 2011 Jan; 19(2):896-905. PubMed ID: 21263629
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design Strategy of Quantum Dot Thin-Film Solar Cells.
    Kim T; Lim S; Yun S; Jeong S; Park T; Choi J
    Small; 2020 Nov; 16(45):e2002460. PubMed ID: 33079485
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of boron doping on the structural and optical properties of silicon nanocrystals in a silicon dioxide matrix.
    Hao XJ; Cho EC; Flynn C; Shen YS; Conibeer G; Green MA
    Nanotechnology; 2008 Oct; 19(42):424019. PubMed ID: 21832679
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electronic Coupling in π-Conjugated Molecule-Bridged Silicon Quantum Dot Clusters Synthesized by Sonogashira Cross-Coupling Reaction.
    Le TH; Choi YH; Kim KJ; Jeong HD
    ACS Omega; 2019 Feb; 4(2):3133-3145. PubMed ID: 31459531
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Production of three-dimensional quantum dot lattice of Ge/Si core-shell quantum dots and Si/Ge layers in an alumina glass matrix.
    Buljan M; Radić N; Sancho-Paramon J; Janicki V; Grenzer J; Bogdanović-Radović I; Siketić Z; Ivanda M; Utrobičić A; Hübner R; Weidauer R; Valeš V; Endres J; Car T; Jerčinović M; Roško J; Bernstorff S; Holy V
    Nanotechnology; 2015 Feb; 26(6):065602. PubMed ID: 25605224
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design of input couplers for efficient silicon thin film solar absorbers.
    Kim SK; Song KD; Park HG
    Opt Express; 2012 Nov; 20(23):A997-1004. PubMed ID: 23326848
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design of input couplers for efficient silicon thin film solar absorbers.
    Kim SK; Song KD; Park HG
    Opt Express; 2012 Nov; 20 Suppl 6():A997-1004. PubMed ID: 23187677
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficient optical absorption in thin-film solar cells.
    Yang L; Xuan Y; Tan J
    Opt Express; 2011 Sep; 19 Suppl 5():A1165-74. PubMed ID: 21935260
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Light-trapping design of graphene transparent electrodes for efficient thin-film silicon solar cells.
    Zhao Y; Chen F; Shen Q; Zhang L
    Appl Opt; 2012 Sep; 51(25):6245-51. PubMed ID: 22945173
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Uniform growth of high-quality oxide thin films on graphene using a CdSe quantum dot array seeding layer.
    Kim YT; Lee SK; Kim KS; Kim YH; Ahn JH; Kwon YU
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):13015-22. PubMed ID: 25058319
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced mobility CsPbI
    Sanehira EM; Marshall AR; Christians JA; Harvey SP; Ciesielski PN; Wheeler LM; Schulz P; Lin LY; Beard MC; Luther JM
    Sci Adv; 2017 Oct; 3(10):eaao4204. PubMed ID: 29098184
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plasma power controlled deposition of SiOx with manipulated Si Quantum Dot size for photoluminescent wavelength tailoring.
    Lai BH; Cheng CH; Pai YH; Lin GR
    Opt Express; 2010 Mar; 18(5):4449-56. PubMed ID: 20389457
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Laser induced sponge-like Si in Si-rich oxides for photovoltaics.
    Gundogdu S; Ozen ES; Hübner R; Heinig KH; Aydinli A
    Opt Express; 2013 Oct; 21(20):24368-74. PubMed ID: 24104345
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effects of electronic coupling between capping molecules and quantum dots on the light absorption and emission of octyl, styryl, and 4-ethynylstyryl terminated silicon quantum dots.
    Le TH; Jeong HD
    Phys Chem Chem Phys; 2014 Sep; 16(35):18821-6. PubMed ID: 25079044
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plasma engineering of silicon quantum dots and their properties through energy deposition and chemistry.
    Sahu BB; Yin Y; Gauter S; Han JG; Kersten H
    Phys Chem Chem Phys; 2016 Sep; 18(37):25837-25851. PubMed ID: 27711781
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Visualizing a core-shell structure of heavily doped silicon quantum dots by electron microscopy using an atomically thin support film.
    Sugimoto H; Yamamura M; Sakiyama M; Fujii M
    Nanoscale; 2018 Apr; 10(16):7357-7362. PubMed ID: 29637958
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Luminophore Configuration and Concentration-Dependent Optoelectronic Characteristics of a Quantum Dot-Embedded DNA Hybrid Thin film.
    Arasu V; Dugasani SR; Kesama MR; Chung HK; Park SH
    Sci Rep; 2017 Sep; 7(1):11567. PubMed ID: 28912561
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.