BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 23579342)

  • 1. Antisense regulation by transposon-derived RNAs in the hyperthermophilic archaeon Sulfolobus solfataricus.
    Märtens B; Manoharadas S; Hasenöhrl D; Manica A; Bläsi U
    EMBO Rep; 2013 Jun; 14(6):527-33. PubMed ID: 23579342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The SmAP2 RNA binding motif in the 3'UTR affects mRNA stability in the crenarchaeum Sulfolobus solfataricus.
    Märtens B; Sharma K; Urlaub H; Bläsi U
    Nucleic Acids Res; 2017 Sep; 45(15):8957-8967. PubMed ID: 28911098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of expression of the arabinose and glucose transporter genes in the thermophilic archaeon Sulfolobus solfataricus.
    Lubelska JM; Jonuscheit M; Schleper C; Albers SV; Driessen AJ
    Extremophiles; 2006 Oct; 10(5):383-91. PubMed ID: 16604273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of novel non-coding RNAs as potential antisense regulators in the archaeon Sulfolobus solfataricus.
    Tang TH; Polacek N; Zywicki M; Huber H; Brugger K; Garrett R; Bachellerie JP; Hüttenhofer A
    Mol Microbiol; 2005 Jan; 55(2):469-81. PubMed ID: 15659164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic metabolic adjustments and genome plasticity are implicated in the heat shock response of the extremely thermoacidophilic archaeon Sulfolobus solfataricus.
    Tachdjian S; Kelly RM
    J Bacteriol; 2006 Jun; 188(12):4553-9. PubMed ID: 16740961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UV-inducible cellular aggregation of the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by pili formation.
    Fröls S; Ajon M; Wagner M; Teichmann D; Zolghadr B; Folea M; Boekema EJ; Driessen AJ; Schleper C; Albers SV
    Mol Microbiol; 2008 Nov; 70(4):938-52. PubMed ID: 18990182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of cis-acting sequences governing catabolite repression control of lacS expression in the archaeon Sulfolobus solfataricus.
    Hoang V; Bini E; Dixit V; Drozda M; Blum P
    Genetics; 2004 Aug; 167(4):1563-72. PubMed ID: 15342498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ss-LrpB, a transcriptional regulator from Sulfolobus solfataricus, regulates a gene cluster with a pyruvate ferredoxin oxidoreductase-encoding operon and permease genes.
    Peeters E; Albers SV; Vassart A; Driessen AJ; Charlier D
    Mol Microbiol; 2009 Feb; 71(4):972-88. PubMed ID: 19170871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The expanding world of small RNAs in the hyperthermophilic archaeon Sulfolobus solfataricus.
    Zago MA; Dennis PP; Omer AD
    Mol Microbiol; 2005 Mar; 55(6):1812-28. PubMed ID: 15752202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A single-base resolution map of an archaeal transcriptome.
    Wurtzel O; Sapra R; Chen F; Zhu Y; Simmons BA; Sorek R
    Genome Res; 2010 Jan; 20(1):133-41. PubMed ID: 19884261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The SmAP1/2 proteins of the crenarchaeon Sulfolobus solfataricus interact with the exosome and stimulate A-rich tailing of transcripts.
    Märtens B; Hou L; Amman F; Wolfinger MT; Evguenieva-Hackenberg E; Bläsi U
    Nucleic Acids Res; 2017 Jul; 45(13):7938-7949. PubMed ID: 28520934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. iCLIP analysis of RNA substrates of the archaeal exosome.
    Bathke J; Gauernack AS; Rupp O; Weber L; Preusser C; Lechner M; Rossbach O; Goesmann A; Evguenieva-Hackenberg E; Klug G
    BMC Genomics; 2020 Nov; 21(1):797. PubMed ID: 33198623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SSO1450--a CAS1 protein from Sulfolobus solfataricus P2 with high affinity for RNA and DNA.
    Han D; Lehmann K; Krauss G
    FEBS Lett; 2009 Jun; 583(12):1928-32. PubMed ID: 19427858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of recombinant and tagged proteins in the hyperthermophilic archaeon Sulfolobus solfataricus.
    Albers SV; Jonuscheit M; Dinkelaker S; Urich T; Kletzin A; Tampé R; Driessen AJ; Schleper C
    Appl Environ Microbiol; 2006 Jan; 72(1):102-11. PubMed ID: 16391031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and characterization of small RNAs in the hyperthermophilic archaeon Sulfolobus solfataricus.
    Xu N; Li Y; Zhao YT; Guo L; Fang YY; Zhao JH; Wang XJ; Huang L; Guo HS
    PLoS One; 2012; 7(4):e35306. PubMed ID: 22514725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The genome-wide binding profile of the Sulfolobus solfataricus transcription factor Ss-LrpB shows binding events beyond direct transcription regulation.
    Nguyen-Duc T; van Oeffelen L; Song N; Hassanzadeh-Ghassabeh G; Muyldermans S; Charlier D; Peeters E
    BMC Genomics; 2013 Nov; 14(1):828. PubMed ID: 24274039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the endonuclease SSO2001 from Sulfolobus solfataricus P2.
    Han D; Krauss G
    FEBS Lett; 2009 Feb; 583(4):771-6. PubMed ID: 19174159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The RadA Recombinase and Paralogs of the Hyperthermophilic Archaeon Sulfolobus solfataricus.
    Rolfsmeier ML; Haseltine CA
    Methods Enzymol; 2018; 600():255-284. PubMed ID: 29458762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The chromosome replication machinery of the archaeon Sulfolobus solfataricus.
    Duggin IG; Bell SD
    J Biol Chem; 2006 Jun; 281(22):15029-32. PubMed ID: 16467299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative analysis of the catechol 2,3-dioxygenase gene locus in thermoacidophilic archaeon Sulfolobus solfataricus strain 98/2.
    Chae JC; Kim E; Bini E; Zylstra GJ
    Biochem Biophys Res Commun; 2007 Jun; 357(3):815-9. PubMed ID: 17451650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.