These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 23579485)
1. Site-specific nucleation and controlled growth of a vertical tellurium nanowire array for high performance field emitters. Safdar M; Zhan X; Niu M; Mirza M; Zhao Q; Wang Z; Zhang J; Sun L; He J Nanotechnology; 2013 May; 24(18):185705. PubMed ID: 23579485 [TBL] [Abstract][Full Text] [Related]
2. Morphology-dependent stimulated emission and field emission of ordered CdS nanostructure arrays. Zhai T; Fang X; Bando Y; Liao Q; Xu X; Zeng H; Ma Y; Yao J; Golberg D ACS Nano; 2009 Apr; 3(4):949-59. PubMed ID: 19309112 [TBL] [Abstract][Full Text] [Related]
3. Large-scale growth of well-aligned SiC tower-like nanowire arrays and their field emission properties. Wang L; Li C; Yang Y; Chen S; Gao F; Wei G; Yang W ACS Appl Mater Interfaces; 2015 Jan; 7(1):526-33. PubMed ID: 25495056 [TBL] [Abstract][Full Text] [Related]
4. Single-crystal SnO(2) nanoshuttles: shape-controlled synthesis, perfect flexibility and high-performance field emission. Li J; Chen M; Tian S; Jin A; Xia X; Gu C Nanotechnology; 2011 Dec; 22(50):505601. PubMed ID: 22108293 [TBL] [Abstract][Full Text] [Related]
5. Influence of ZnO nanowire array morphology on field emission characteristics. Garry S; McCarthy É; Mosnier JP; McGlynn E Nanotechnology; 2014 Apr; 25(13):135604. PubMed ID: 24594490 [TBL] [Abstract][Full Text] [Related]
6. Self-assembled ZnS nanowire arrays: synthesis, in situ Cu doping and field emission. Liu B; Bando Y; Jiang X; Li C; Fang X; Zeng H; Terao T; Tang C; Mitome M; Golberg D Nanotechnology; 2010 Sep; 21(37):375601. PubMed ID: 20714051 [TBL] [Abstract][Full Text] [Related]
7. An ordered Si nanowire with NiSi2 tip arrays as excellent field emitters. Liu CY; Li WS; Chu LW; Lu MY; Tsai CJ; Chen LJ Nanotechnology; 2011 Feb; 22(5):055603. PubMed ID: 21178255 [TBL] [Abstract][Full Text] [Related]
8. Enhanced electron field emission properties of high aspect ratio silicon nanowire-zinc oxide core-shell arrays. Kale VS; Prabhakar RR; Pramana SS; Rao M; Sow CH; Jinesh KB; Mhaisalkar SG Phys Chem Chem Phys; 2012 Apr; 14(13):4614-9. PubMed ID: 22354387 [TBL] [Abstract][Full Text] [Related]
9. Controlling the growth and field emission properties of silicide nanowire arrays by direct silicification of Ni foil. Liu Z; Zhang H; Wang L; Yang D Nanotechnology; 2008 Sep; 19(37):375602. PubMed ID: 21832554 [TBL] [Abstract][Full Text] [Related]
10. Solution-phase synthesis of single-crystal Cu3Si nanowire arrays on diverse substrates with dual functions as high-performance field emitters and efficient anti-reflective layers. Yuan FW; Wang CY; Li GA; Chang SH; Chu LW; Chen LJ; Tuan HY Nanoscale; 2013 Oct; 5(20):9875-81. PubMed ID: 23979254 [TBL] [Abstract][Full Text] [Related]
11. Zinc sulfide nanowire arrays on silicon wafers for field emitters. Chen ZG; Cheng L; Zou J; Yao X; Lu GQ; Cheng HM Nanotechnology; 2010 Feb; 21(6):065701. PubMed ID: 20057025 [TBL] [Abstract][Full Text] [Related]
12. Pattern and feature designed growth of ZnO nanowire arrays for vertical devices. He JH; Hsu JH; Wang CW; Lin HN; Chen LJ; Wang ZL J Phys Chem B; 2006 Jan; 110(1):50-3. PubMed ID: 16471497 [TBL] [Abstract][Full Text] [Related]
13. A novel catalyst-free synthesis of vertically aligned silicon nanowire-carbon nanotube heterojunction arrays for high performance electron field emitters. Kale VS; Sathe BR; Kushwaha A; Aslam M; Shelke MV Chem Commun (Camb); 2011 Jul; 47(27):7785-7. PubMed ID: 21637892 [TBL] [Abstract][Full Text] [Related]
14. Silicon rice-straw array emitters and their superior electron field emission. Wu HC; Tsai HY; Chiu HT; Lee CY ACS Appl Mater Interfaces; 2010 Nov; 2(11):3285-8. PubMed ID: 20964442 [TBL] [Abstract][Full Text] [Related]
15. Large-scale controllable patterning growth of aligned organic nanowires through evaporation-induced self-assembly. Bao R; Zhang C; Wang Z; Zhang X; Ou X; Lee CS; Jie J; Zhang X Chemistry; 2012 Jan; 18(3):975-80. PubMed ID: 22170498 [TBL] [Abstract][Full Text] [Related]
16. Synthesis of dense, single-crystalline CrO2 nanowire arrays using AAO template-assisted chemical vapor deposition. Zhao Q; Wen G; Liu Z; Fan Y; Zou G; Li L; Zheng R; Ringer SP; Mao HK Nanotechnology; 2011 Mar; 22(12):125603. PubMed ID: 21325713 [TBL] [Abstract][Full Text] [Related]
17. Flexible three-dimensional SnO2 nanowire arrays: atomic layer deposition-assisted synthesis, excellent photodetectors, and field emitters. Deng K; Lu H; Shi Z; Liu Q; Li L ACS Appl Mater Interfaces; 2013 Aug; 5(16):7845-51. PubMed ID: 23879602 [TBL] [Abstract][Full Text] [Related]
18. Organic nanowire hierarchy over fabric platform for flexible cold cathode. Maiti S; Maiti UN; Pal S; Chattopadhyay KK Nanotechnology; 2013 Nov; 24(46):465601. PubMed ID: 24149237 [TBL] [Abstract][Full Text] [Related]
19. Dense and vertically-aligned centimetre-long ZnS nanowire arrays: ionic liquid assisted synthesis and their field emission properties. Chen S; Li L; Wang X; Tian W; Wang X; Tang DM; Bando Y; Golberg D Nanoscale; 2012 Apr; 4(8):2658-62. PubMed ID: 22294056 [TBL] [Abstract][Full Text] [Related]
20. Coplanar-gate ZnO nanowire field emitter arrays with enhanced gate-control performance using a ring-shaped cathode. Zhao L; Chen Y; Zhang Z; Cao X; Zhang G; She J; Deng S; Xu N; Chen J Sci Rep; 2018 Aug; 8(1):12294. PubMed ID: 30116023 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]