These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 23579557)

  • 1. Mg-doped VO2 nanoparticles: hydrothermal synthesis, enhanced visible transmittance and decreased metal-insulator transition temperature.
    Zhou J; Gao Y; Liu X; Chen Z; Dai L; Cao C; Luo H; Kanahira M; Sun C; Yan L
    Phys Chem Chem Phys; 2013 May; 15(20):7505-11. PubMed ID: 23579557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. F-doped VO2 nanoparticles for thermochromic energy-saving foils with modified color and enhanced solar-heat shielding ability.
    Dai L; Chen S; Liu J; Gao Y; Zhou J; Chen Z; Cao C; Luo H; Kanehira M
    Phys Chem Chem Phys; 2013 Jul; 15(28):11723-9. PubMed ID: 23752949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The visible transmittance and solar modulation ability of VO2 flexible foils simultaneously improved by Ti doping: an optimization and first principle study.
    Chen S; Dai L; Liu J; Gao Y; Liu X; Chen Z; Zhou J; Cao C; Han P; Luo H; Kanahira M
    Phys Chem Chem Phys; 2013 Oct; 15(40):17537-43. PubMed ID: 24030357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and characterization of VO₂(M)-SnO₂ thermochromic films for application as energy-saving smart coatings.
    Li W; Ji S; Qian K; Jin P
    J Colloid Interface Sci; 2015 Oct; 456():166-73. PubMed ID: 26122797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Terbium-Doped VO2 Thin Films: Reduced Phase Transition Temperature and Largely Enhanced Luminous Transmittance.
    Wang N; Duchamp M; Dunin-Borkowski RE; Liu S; Zeng X; Cao X; Long Y
    Langmuir; 2016 Jan; 32(3):759-64. PubMed ID: 26729057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lowered phase transition temperature and excellent solar heat shielding properties of well-crystallized VO
    Shen N; Dong B; Cao C; Chen Z; Liu J; Luo H; Gao Y
    Phys Chem Chem Phys; 2016 Oct; 18(40):28010-28017. PubMed ID: 27711687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermochromic VO2 thin films: solution-based processing, improved optical properties, and lowered phase transformation temperature.
    Zhang Z; Gao Y; Chen Z; Du J; Cao C; Kang L; Luo H
    Langmuir; 2010 Jul; 26(13):10738-44. PubMed ID: 20329789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orbital change manipulation metal-insulator transition temperature in W-doped VO2.
    He X; Zeng Y; Xu X; Gu C; Chen F; Wu B; Wang C; Xing H; Chen X; Chu J
    Phys Chem Chem Phys; 2015 May; 17(17):11638-46. PubMed ID: 25866849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-Step Hydrothermal Synthesis of W-Doped VO
    Liang S; Shi Q; Zhu H; Peng B; Huang W
    ACS Omega; 2016 Dec; 1(6):1139-1148. PubMed ID: 31457185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical Study of Electronic Properties of X-Doped (X = F, Cl, Br, I) VO2 Nanoparticles for Thermochromic Energy-Saving Foils.
    Ren Q; Wan J; Gao Y
    J Phys Chem A; 2014 Nov; 118(46):11114-8. PubMed ID: 25353175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DC sputtered W-doped VO2 thermochromic thin films for smart windows with active solar control.
    Batista C; Ribeiro R; Carneiro J; Teixeira V
    J Nanosci Nanotechnol; 2009 Jul; 9(7):4220-6. PubMed ID: 19916434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Axially engineered metal-insulator phase transition by graded doping VO2 nanowires.
    Lee S; Cheng C; Guo H; Hippalgaonkar K; Wang K; Suh J; Liu K; Wu J
    J Am Chem Soc; 2013 Mar; 135(12):4850-5. PubMed ID: 23465080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. THz Transmittance and Electrical Properties Tuning across IMT in Vanadium Dioxide Films by Al Doping.
    Wu X; Wu Z; Ji C; Zhang H; Su Y; Huang Z; Gou J; Wei X; Wang J; Jiang Y
    ACS Appl Mater Interfaces; 2016 May; 8(18):11842-50. PubMed ID: 27096418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Giant reduction of the phase transition temperature for beryllium doped VO2.
    Zhang J; He H; Xie Y; Pan B
    Phys Chem Chem Phys; 2013 Apr; 15(13):4687-90. PubMed ID: 23423531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical, Electrical, Structural, and Thermo-Mechanical Properties of Undoped and Tungsten-Doped Vanadium Dioxide Thin Films.
    Tien CL; Chiang CY; Wang CC; Lin SC
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and study of optical properties of transition metals doped ZnS nanoparticles.
    Ramasamy V; Praba K; Murugadoss G
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Oct; 96():963-71. PubMed ID: 22938741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrothermal synthesis of Mo-doped VO2/TiO2 composite nanocrystals with enhanced thermochromic performance.
    Li D; Li M; Pan J; Luo Y; Wu H; Zhang Y; Li G
    ACS Appl Mater Interfaces; 2014 May; 6(9):6555-61. PubMed ID: 24734771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen-doping induced reduction in the phase transition temperature of VO2: a first-principles study.
    Cui Y; Shi S; Chen L; Luo H; Gao Y
    Phys Chem Chem Phys; 2015 Aug; 17(32):20998-1004. PubMed ID: 26214593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectral assignments in the infrared absorption region and anomalous thermal hysteresis in the interband electronic transition of vanadium dioxide films.
    Zhang P; Li M; Deng Q; Zhang J; Wu J; Hu Z; Chu J
    Phys Chem Chem Phys; 2016 Feb; 18(8):6239-46. PubMed ID: 26853967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elucidating the Crystallite Size Dependence of the Thermochromic Properties of Nanocomposite VO
    Fleer NA; Pelcher KE; Nieto K; Braham EJ; Zou J; Horrocks GA; Naoi Y; Depner SW; Schultz BJ; Amano J; Sellers DG; Banerjee S
    ACS Omega; 2018 Oct; 3(10):14280-14293. PubMed ID: 31458119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.