These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 23579569)

  • 1. Asymmetric magnetoconductance and magneto-Coulomb effect in a carbon nanotube single electron transistor.
    Lee JS; Park JW; Song JY; Kim J
    Nanotechnology; 2013 May; 24(19):195201. PubMed ID: 23579569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of nanoscale magnetic activity using a single carbon nanotube.
    Soldano C; Kar S; Talapatra S; Nayak S; Ajayan PM
    Nano Lett; 2008 Dec; 8(12):4498-505. PubMed ID: 19367805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coulomb blockade in an open quantum dot.
    Amasha S; Rau IG; Grobis M; Potok RM; Shtrikman H; Goldhaber-Gordon D
    Phys Rev Lett; 2011 Nov; 107(21):216804. PubMed ID: 22181909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating defects in solution-processed carbon nanotube devices via low-temperature transport spectroscopy.
    Stokes P; Khondaker SI
    ACS Nano; 2010 May; 4(5):2659-66. PubMed ID: 20377242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eightfold shell filling in a double-wall carbon nanotube quantum dot.
    Moon S; Song W; Lee JS; Kim N; Kim J; Lee SG; Choi MS
    Phys Rev Lett; 2007 Oct; 99(17):176804. PubMed ID: 17995359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetoconductance of carbon nanotube p-n junctions.
    Andreev AV
    Phys Rev Lett; 2007 Dec; 99(24):247204. PubMed ID: 18233479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magneto-Coulomb effect in carbon nanotube quantum dots filled with magnetic nanoparticles.
    Datta S; Marty L; Cleuziou JP; Tilmaciu C; Soula B; Flahaut E; Wernsdorfer W
    Phys Rev Lett; 2011 Oct; 107(18):186804. PubMed ID: 22107663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical tuning of spin current in a boron nitride nanotube quantum dot.
    Dhungana KB; Pati R
    Phys Chem Chem Phys; 2014 May; 16(17):7996-8002. PubMed ID: 24647362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scanned probe imaging of single-electron charge states in nanotube quantum dots.
    Woodside MT; McEuen PL
    Science; 2002 May; 296(5570):1098-101. PubMed ID: 12004123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unique carbon-nanotube field-effect transistors with asymmetric source and drain contacts.
    Li H; Zhang Q; Marzari N
    Nano Lett; 2008 Jan; 8(1):64-8. PubMed ID: 18069866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Schemes for Single Electron Transistor Based on Double Quantum Dot Islands Utilizing a Graphene Nanoscroll, Carbon Nanotube and Fullerene.
    Khademhosseini V; Dideban D; Ahmadi MT; Heidari H
    Molecules; 2022 Jan; 27(1):. PubMed ID: 35011532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite transverse conductance and anisotropic magnetoconductance under an applied in-plane magnetic field in two-dimensional electron gases with strong spin-orbit coupling.
    Soori A
    J Phys Condens Matter; 2021 Jun; 33(33):. PubMed ID: 34107457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrically tunable spin polarization in a carbon nanotube spin diode.
    Merchant CA; Marković N
    Phys Rev Lett; 2008 Apr; 100(15):156601. PubMed ID: 18518136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spin-polarized light-emitting diode based on an organic bipolar spin valve.
    Nguyen TD; Ehrenfreund E; Vardeny ZV
    Science; 2012 Jul; 337(6091):204-9. PubMed ID: 22798608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of coupled graphene-nanotube quantum devices.
    Engels S; Weber P; Terrés B; Dauber J; Meyer C; Volk C; Trellenkamp S; Wichmann U; Stampfer C
    Nanotechnology; 2013 Jan; 24(3):035204. PubMed ID: 23263231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ballistic carbon nanotube field-effect transistors.
    Javey A; Guo J; Wang Q; Lundstrom M; Dai H
    Nature; 2003 Aug; 424(6949):654-7. PubMed ID: 12904787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interference effects in a double quantum dot system with inter-dot Coulomb correlations.
    Sztenkiel D; Swirkowicz R
    J Phys Condens Matter; 2007 Apr; 19(17):176202. PubMed ID: 21690948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Terahertz response in single-walled carbon nanotube transistor: a real-time quantum dynamics simulation.
    Lu RF; Lu YP; Lee SY; Han KL; Deng WQ
    Nanotechnology; 2009 Dec; 20(50):505401. PubMed ID: 19907069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling the sign of magnetoconductance in Andreev quantum dots.
    Whitney RS; Jacquod P
    Phys Rev Lett; 2009 Dec; 103(24):247002. PubMed ID: 20366223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of band structure on quantum interference in multiwall carbon nanotubes.
    Stojetz B; Miko C; Forró L; Strunk C
    Phys Rev Lett; 2005 May; 94(18):186802. PubMed ID: 15904392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.