These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 23579956)

  • 1. Effects of antimicrobial peptide revealed by simulations: translocation, pore formation, membrane corrugation and euler buckling.
    Chen L; Jia N; Gao L; Fang W; Golubovic L
    Int J Mol Sci; 2013 Apr; 14(4):7932-58. PubMed ID: 23579956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antimicrobial action of the cationic peptide, chrysophsin-3: a coarse-grained molecular dynamics study.
    Catte A; Wilson MR; Walker M; Oganesyan VS
    Soft Matter; 2018 Apr; 14(15):2796-2807. PubMed ID: 29595197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coarse-grained simulations of the membrane-active antimicrobial Peptide maculatin 1.1.
    Bond PJ; Parton DL; Clark JF; Sansom MS
    Biophys J; 2008 Oct; 95(8):3802-15. PubMed ID: 18641064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antimicrobial Peptide Simulations and the Influence of Force Field on the Free Energy for Pore Formation in Lipid Bilayers.
    Bennett WF; Hong CK; Wang Y; Tieleman DP
    J Chem Theory Comput; 2016 Sep; 12(9):4524-33. PubMed ID: 27529120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How a short pore forming peptide spans the lipid membrane.
    Vestergaard M; Christensen M; Hansen SK; Grønvall D; Kjølbye LR; Vosegaard T; Schiøtt B
    Biointerphases; 2017 May; 12(2):02D405. PubMed ID: 28476091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A coarse-grained approach to studying the interactions of the antimicrobial peptides aurein 1.2 and maculatin 1.1 with POPG/POPE lipid mixtures.
    Balatti GE; Martini MF; Pickholz M
    J Mol Model; 2018 Jul; 24(8):208. PubMed ID: 30019106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of Antimicrobial Peptide Potency in Stressed Lipid Bilayers.
    Losasso V; Hsiao YW; Martelli F; Winn MD; Crain J
    Phys Rev Lett; 2019 May; 122(20):208103. PubMed ID: 31172786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical insight into the relationship between the structures of antimicrobial peptides and their actions on bacterial membranes.
    Chen L; Li X; Gao L; Fang W
    J Phys Chem B; 2015 Jan; 119(3):850-60. PubMed ID: 25062757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential Interaction of Antimicrobial Peptides with Lipid Structures Studied by Coarse-Grained Molecular Dynamics Simulations.
    Balatti GE; Ambroggio EE; Fidelio GD; Martini MF; Pickholz M
    Molecules; 2017 Oct; 22(10):. PubMed ID: 29053635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimicrobial peptides in action.
    Leontiadou H; Mark AE; Marrink SJ
    J Am Chem Soc; 2006 Sep; 128(37):12156-61. PubMed ID: 16967965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics methods to predict peptide locations in membranes: LAH4 as a stringent test case.
    Farrotti A; Bocchinfuso G; Palleschi A; Rosato N; Salnikov ES; Voievoda N; Bechinger B; Stella L
    Biochim Biophys Acta; 2015 Feb; 1848(2):581-92. PubMed ID: 25445672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of the antimicrobial peptide cyclo(RRWWRF) with membranes by molecular dynamics simulations.
    Appelt C; Eisenmenger F; Kühne R; Schmieder P; Söderhäll JA
    Biophys J; 2005 Oct; 89(4):2296-306. PubMed ID: 16040748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphate-mediated arginine insertion into lipid membranes and pore formation by a cationic membrane peptide from solid-state NMR.
    Tang M; Waring AJ; Hong M
    J Am Chem Soc; 2007 Sep; 129(37):11438-46. PubMed ID: 17705480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of lipid shape on toroidal pore formation and peptide orientation in lipid bilayers.
    Woo SY; Lee H
    Phys Chem Chem Phys; 2017 Aug; 19(32):21340-21349. PubMed ID: 28762427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toroidal pores formed by antimicrobial peptides show significant disorder.
    Sengupta D; Leontiadou H; Mark AE; Marrink SJ
    Biochim Biophys Acta; 2008 Oct; 1778(10):2308-17. PubMed ID: 18602889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural effects of tachyplesin I and its linear derivative on their aggregation and mobility in lipid bilayers.
    Han E; Lee H
    J Mol Graph Model; 2015 Jun; 59():123-8. PubMed ID: 25978805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mechanism of action of β-hairpin antimicrobial peptide arenicin: oligomeric structure in dodecylphosphocholine micelles and pore formation in planar lipid bilayers.
    Shenkarev ZO; Balandin SV; Trunov KI; Paramonov AS; Sukhanov SV; Barsukov LI; Arseniev AS; Ovchinnikova TV
    Biochemistry; 2011 Jul; 50(28):6255-65. PubMed ID: 21627330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane-active peptides: binding, translocation, and flux in lipid vesicles.
    Almeida PF
    Biochim Biophys Acta; 2014 Sep; 1838(9):2216-27. PubMed ID: 24769436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous buckling of lipid bilayer and vesicle budding induced by antimicrobial peptide magainin 2: a coarse-grained simulation study.
    Woo HJ; Wallqvist A
    J Phys Chem B; 2011 Jun; 115(25):8122-9. PubMed ID: 21651300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.