These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 23580199)
1. Raf-mediated cardiac hypertrophy in adult Drosophila. Yu L; Daniels J; Glaser AE; Wolf MJ Dis Model Mech; 2013 Jul; 6(4):964-76. PubMed ID: 23580199 [TBL] [Abstract][Full Text] [Related]
2. Cardiac hypertrophy induced by active Raf depends on Yorkie-mediated transcription. Yu L; Daniels JP; Wu H; Wolf MJ Sci Signal; 2015 Feb; 8(362):ra13. PubMed ID: 25650441 [TBL] [Abstract][Full Text] [Related]
3. Cardiomyocyte BRAF and type 1 RAF inhibitors promote cardiomyocyte and cardiac hypertrophy in mice in vivo. Clerk A; Meijles DN; Hardyman MA; Fuller SJ; Chothani SP; Cull JJ; Cooper STE; Alharbi HO; Vanezis K; Felkin LE; Markou T; Leonard SJ; Shaw SW; Rackham OJL; Cook SA; Glennon PE; Sheppard MN; Sembrat JC; Rojas M; McTiernan CF; Barton PJ; Sugden PH Biochem J; 2022 Feb; 479(3):401-424. PubMed ID: 35147166 [TBL] [Abstract][Full Text] [Related]
4. Peroxynitrite activates ERK via Raf-1 and MEK, independently from EGF receptor and p21Ras in H9C2 cardiomyocytes. Pesse B; Levrand S; Feihl F; Waeber B; Gavillet B; Pacher P; Liaudet L J Mol Cell Cardiol; 2005 May; 38(5):765-75. PubMed ID: 15850570 [TBL] [Abstract][Full Text] [Related]
5. Raf-1 kinase is required for cardiac hypertrophy and cardiomyocyte survival in response to pressure overload. Harris IS; Zhang S; Treskov I; Kovacs A; Weinheimer C; Muslin AJ Circulation; 2004 Aug; 110(6):718-23. PubMed ID: 15289381 [TBL] [Abstract][Full Text] [Related]
6. Role of raf proteins in cardiac hypertrophy and cardiomyocyte survival. Muslin AJ Trends Cardiovasc Med; 2005 Aug; 15(6):225-9. PubMed ID: 16182133 [TBL] [Abstract][Full Text] [Related]
7. Raf-1 kinase activity is necessary and sufficient for gene expression changes but not sufficient for cellular morphology changes associated with cardiac myocyte hypertrophy. Thorburn J; McMahon M; Thorburn A J Biol Chem; 1994 Dec; 269(48):30580-6. PubMed ID: 7982977 [TBL] [Abstract][Full Text] [Related]
8. Regulation of cardiac hypertrophic signaling by prolyl isomerase Pin1. Toko H; Konstandin MH; Doroudgar S; Ormachea L; Joyo E; Joyo AY; Din S; Gude NA; Collins B; Völkers M; Thuerauf DJ; Glembotski CC; Chen CH; Lu KP; Müller OJ; Uchida T; Sussman MA Circ Res; 2013 Apr; 112(9):1244-52. PubMed ID: 23487407 [TBL] [Abstract][Full Text] [Related]
9. Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Kolch W Nat Rev Mol Cell Biol; 2005 Nov; 6(11):827-37. PubMed ID: 16227978 [TBL] [Abstract][Full Text] [Related]
10. ROCK1 plays an essential role in the transition from cardiac hypertrophy to failure in mice. Shi J; Zhang YW; Yang Y; Zhang L; Wei L J Mol Cell Cardiol; 2010 Nov; 49(5):819-28. PubMed ID: 20709073 [TBL] [Abstract][Full Text] [Related]
11. Sodium tanshinone IIA sulfonate depresses angiotensin II-induced cardiomyocyte hypertrophy through MEK/ERK pathway. Yang L; Zou X; Liang Q; Chen H; Feng J; Yan L; Wang Z; Zhou D; Li S; Yao S; Zheng Z Exp Mol Med; 2007 Feb; 39(1):65-73. PubMed ID: 17334230 [TBL] [Abstract][Full Text] [Related]
12. Heat-shock protein 90 modulates cardiac ventricular hypertrophy via activation of MAPK pathway. Tamura S; Marunouchi T; Tanonaka K J Mol Cell Cardiol; 2019 Feb; 127():134-142. PubMed ID: 30582930 [TBL] [Abstract][Full Text] [Related]
13. Activation of the RAF/mitogen-activated protein/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase pathway mediates apoptosis induced by chelerythrine in osteosarcoma. Yang R; Piperdi S; Gorlick R Clin Cancer Res; 2008 Oct; 14(20):6396-404. PubMed ID: 18927278 [TBL] [Abstract][Full Text] [Related]
14. Analysis of Petersen CE; Tripoli BA; Schoborg TA; Smyth JT Am J Physiol Heart Circ Physiol; 2022 Feb; 322(2):H296-H309. PubMed ID: 34951542 [TBL] [Abstract][Full Text] [Related]
15. Cyclosporine attenuates cardiomyocyte hypertrophy induced by RAF1 mutants in Noonan and LEOPARD syndromes. Dhandapany PS; Fabris F; Tonk R; Illaste A; Karakikes I; Sorourian M; Sheng J; Hajjar RJ; Tartaglia M; Sobie EA; Lebeche D; Gelb BD J Mol Cell Cardiol; 2011 Jul; 51(1):4-15. PubMed ID: 21440552 [TBL] [Abstract][Full Text] [Related]
16. Deletion of Ptpn11 (Shp2) in cardiomyocytes causes dilated cardiomyopathy via effects on the extracellular signal-regulated kinase/mitogen-activated protein kinase and RhoA signaling pathways. Kontaridis MI; Yang W; Bence KK; Cullen D; Wang B; Bodyak N; Ke Q; Hinek A; Kang PM; Liao R; Neel BG Circulation; 2008 Mar; 117(11):1423-35. PubMed ID: 18316486 [TBL] [Abstract][Full Text] [Related]
17. 20-HETE activates the Raf/MEK/ERK pathway in renal epithelial cells through an EGFR- and c-Src-dependent mechanism. Akbulut T; Regner KR; Roman RJ; Avner ED; Falck JR; Park F Am J Physiol Renal Physiol; 2009 Sep; 297(3):F662-70. PubMed ID: 19570883 [TBL] [Abstract][Full Text] [Related]
18. Deletion of the inducible 70-kDa heat shock protein genes in mice impairs cardiac contractile function and calcium handling associated with hypertrophy. Kim YK; Suarez J; Hu Y; McDonough PM; Boer C; Dix DJ; Dillmann WH Circulation; 2006 Jun; 113(22):2589-97. PubMed ID: 16735677 [TBL] [Abstract][Full Text] [Related]
20. Cholecystokinin stimulates extracellular signal-regulated kinase through activation of the epidermal growth factor receptor, Yes, and protein kinase C. Signal amplification at the level of Raf by activation of protein kinase Cepsilon. Piiper A; Elez R; You SJ; Kronenberger B; Loitsch S; Roche S; Zeuzem S J Biol Chem; 2003 Feb; 278(9):7065-72. PubMed ID: 12496267 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]