These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 23580422)

  • 1. Interaction of treatment with a continuous variable: simulation study of significance level for several methods of analysis.
    Royston P; Sauerbrei W
    Stat Med; 2013 Sep; 32(22):3788-803. PubMed ID: 23580422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of treatment with a continuous variable: simulation study of power for several methods of analysis.
    Royston P; Sauerbrei W
    Stat Med; 2014 Nov; 33(27):4695-708. PubMed ID: 25244679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Simulation Study Comparing Different Statistical Approaches for the Identification of Predictive Biomarkers.
    Haller B; Ulm K; Hapfelmeier A
    Comput Math Methods Med; 2019; 2019():7037230. PubMed ID: 31312252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of methods to adjust for continuous covariates in the analysis of randomised trials.
    Kahan BC; Rushton H; Morris TP; Daniel RM
    BMC Med Res Methodol; 2016 Apr; 16():42. PubMed ID: 27068456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subgroup analyses in randomised controlled trials: quantifying the risks of false-positives and false-negatives.
    Brookes ST; Whitley E; Peters TJ; Mulheran PA; Egger M; Davey Smith G
    Health Technol Assess; 2001; 5(33):1-56. PubMed ID: 11701102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Categorisation of continuous covariates for stratified randomisation: How should we adjust?
    Sullivan TR; Morris TP; Kahan BC; Cuthbert AR; Yelland LN
    Stat Med; 2024 May; 43(11):2083-2095. PubMed ID: 38487976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How large are the consequences of covariate imbalance in cluster randomized trials: a simulation study with a continuous outcome and a binary covariate at the cluster level.
    Moerbeek M; van Schie S
    BMC Med Res Methodol; 2016 Jul; 16():79. PubMed ID: 27401771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of pharmacokinetic studies for latent covariates.
    Lagishetty CV; Coulter CV; Duffull SB
    J Pharmacokinet Pharmacodyn; 2012 Feb; 39(1):87-97. PubMed ID: 22161222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new approach to modelling interactions between treatment and continuous covariates in clinical trials by using fractional polynomials.
    Royston P; Sauerbrei W
    Stat Med; 2004 Aug; 23(16):2509-25. PubMed ID: 15287081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison between splines and fractional polynomials for multivariable model building with continuous covariates: a simulation study with continuous response.
    Binder H; Sauerbrei W; Royston P
    Stat Med; 2013 Jun; 32(13):2262-77. PubMed ID: 23034770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of covariate adjustment approaches under model misspecification in individually randomized trials.
    Tackney MS; Morris T; White I; Leyrat C; Diaz-Ordaz K; Williamson E
    Trials; 2023 Jan; 24(1):14. PubMed ID: 36609282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relationship between statistical power and predictor distribution in multilevel logistic regression: a simulation-based approach.
    Olvera Astivia OL; Gadermann A; Guhn M
    BMC Med Res Methodol; 2019 May; 19(1):97. PubMed ID: 31072299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Randomized controlled trials with time-to-event outcomes: how much does prespecified covariate adjustment increase power?
    Hernández AV; Eijkemans MJ; Steyerberg EW
    Ann Epidemiol; 2006 Jan; 16(1):41-8. PubMed ID: 16275011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A note on non-parametric ANCOVA for covariate adjustment in randomized clinical trials.
    Lesaffre E; Senn S
    Stat Med; 2003 Dec; 22(23):3583-96. PubMed ID: 14652862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Covariate adjustment in randomized controlled trials with dichotomous outcomes increases statistical power and reduces sample size requirements.
    Hernández AV; Steyerberg EW; Habbema JD
    J Clin Epidemiol; 2004 May; 57(5):454-60. PubMed ID: 15196615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Power and sample size calculations for discrete bounded outcome scores.
    Tsonaka R; Rizopoulos D; Lesaffre E
    Stat Med; 2006 Dec; 25(24):4241-52. PubMed ID: 16947202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating Flexible Modeling of Continuous Covariates in Inverse-Weighted Estimators.
    Kyle RP; Moodie EEM; Klein MB; Abrahamowicz M
    Am J Epidemiol; 2019 Jun; 188(6):1181-1191. PubMed ID: 30649165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. To adjust or not to adjust for baseline when analyzing repeated binary responses? The case of complete data when treatment comparison at study end is of interest.
    Jiang H; Kulkarni PM; Mallinckrodt CH; Shurzinske L; Molenberghs G; Lipkovich I
    Pharm Stat; 2015; 14(3):262-71. PubMed ID: 25866149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Simulation-Based Comparison of Covariate Adjustment Methods for the Analysis of Randomized Controlled Trials.
    Chaussé P; Liu J; Luta G
    Int J Environ Res Public Health; 2016 Apr; 13(4):414. PubMed ID: 27077870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fractional polynomial adjustment for time-varying covariates in a self-controlled case series analysis.
    Lee KJ; Carlin JB
    Stat Med; 2014 Jan; 33(1):105-16. PubMed ID: 23868284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.