BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 23580477)

  • 1. Chemical in-gel deglycosylation of O-glycoproteins improves their staining and mass spectrometric identification.
    Bellwied P; Staubach S; Hanisch FG
    Electrophoresis; 2013 Aug; 34(16):2387-93. PubMed ID: 23580477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tools for glycoproteomic analysis: size exclusion chromatography facilitates identification of tryptic glycopeptides with N-linked glycosylation sites.
    Alvarez-Manilla G; Atwood J; Guo Y; Warren NL; Orlando R; Pierce M
    J Proteome Res; 2006 Mar; 5(3):701-8. PubMed ID: 16512686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycoprotein identification and localization of O-glycosylation sites by mass spectrometric analysis of deglycosylated/alkylaminylated peptide fragments.
    Hanisch FG; Jovanovic M; Peter-Katalinic J
    Anal Biochem; 2001 Mar; 290(1):47-59. PubMed ID: 11180936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly sensitive multistage mass spectrometry enables small-scale analysis of protein glycosylation from two-dimensional polyacrylamide gels.
    Takemori N; Komori N; Matsumoto H
    Electrophoresis; 2006 Apr; 27(7):1394-406. PubMed ID: 16502458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical de-O-glycosylation of glycoproteins for applications in LC-based proteomics.
    Hanisch FG
    Methods Mol Biol; 2011; 753():323-33. PubMed ID: 21604133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deglycosylation systematically improves N-glycoprotein identification in liquid chromatography-tandem mass spectrometry proteomics for analysis of cell wall stress responses in Saccharomyces cerevisiae lacking Alg3p.
    Bailey UM; Schulz BL
    J Chromatogr B Analyt Technol Biomed Life Sci; 2013 Apr; 923-924():16-21. PubMed ID: 23454304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-pipeline approach achieving glycoprotein identification and obtaining intact glycopeptide information by tandem mass spectrometry.
    Chen Y; Liu M; Yan G; Lu H; Yang P
    Mol Biosyst; 2010 Dec; 6(12):2417-22. PubMed ID: 20886165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Counterion dye staining of proteins in one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and tryptic gel digestion of stained protein for mass spectrometry.
    Cong WT; Wang X; Hwang SY; Jin LT; Choi JK
    Methods Mol Biol; 2012; 869():497-509. PubMed ID: 22585515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ProteomIQ blue, a potent post-stain for the visualization and subsequent mass spectrometry based identification of fluorescent stained proteins on 2D-gels.
    Wijte D; de Jong AL; Mol MA; van Baar BL; Heck AJ
    J Proteome Res; 2006 Aug; 5(8):2033-8. PubMed ID: 16889427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycoproteomics based on tandem mass spectrometry of glycopeptides.
    Wuhrer M; Catalina MI; Deelder AM; Hokke CH
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Apr; 849(1-2):115-28. PubMed ID: 17049937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An approach to quantifying N-linked glycoproteins by enzyme-catalyzed 18O3-labeling of solid-phase enriched glycopeptides.
    Shakey Q; Bates B; Wu J
    Anal Chem; 2010 Sep; 82(18):7722-8. PubMed ID: 20795641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Top-down sequencing of O-glycoproteins by in-source decay matrix-assisted laser desorption ionization mass spectrometry for glycosylation site analysis.
    Hanisch FG
    Anal Chem; 2011 Jun; 83(12):4829-37. PubMed ID: 21526855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assigning glycosylation sites and microheterogeneities in glycoproteins by liquid chromatography/tandem mass spectrometry.
    Mechref Y; Madera M; Novotny MV
    Methods Mol Biol; 2009; 492():161-80. PubMed ID: 19241032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An improved in-gel digestion method for efficient identification of protein and glycosylation analysis of glycoproteins using guanidine hydrochloride.
    Takakura D; Hashii N; Kawasaki N
    Proteomics; 2014 Feb; 14(2-3):196-201. PubMed ID: 24272977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sialic acid capture-and-release and LC-MS(n) analysis of glycopeptides.
    Nilsson J; Larson G
    Methods Mol Biol; 2013; 951():79-100. PubMed ID: 23296526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods in enzymology: O-glycosylation of proteins.
    Peter-Katalinić J
    Methods Enzymol; 2005; 405():139-71. PubMed ID: 16413314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical de-O-glycosylation of glycoproteins for application in LC-based proteomics.
    Hanisch FG; Teitz S; Schwientek T; Müller S
    Proteomics; 2009 Feb; 9(3):710-9. PubMed ID: 19132687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acid-labile surfactant improves in-sodium dodecyl sulfate polyacrylamide gel protein digestion for matrix-assisted laser desorption/ionization mass spectrometric peptide mapping.
    Nomura E; Katsuta K; Ueda T; Toriyama M; Mori T; Inagaki N
    J Mass Spectrom; 2004 Feb; 39(2):202-7. PubMed ID: 14991690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel procedure for the identification of proteins by mass fingerprinting combining two-dimensional electrophoresis with fluorescent SYPRO red staining.
    Valdes I; Pitarch A; Gil C; Bermúdez A; Llorente M; Nombela C; Méndez E
    J Mass Spectrom; 2000 Jun; 35(6):672-82. PubMed ID: 10862118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MALDI-TOF-MS analysis of sialylated glycans and glycopeptides using 4-chloro-α-cyanocinnamic acid matrix.
    Selman MH; Hoffmann M; Zauner G; McDonnell LA; Balog CI; Rapp E; Deelder AM; Wuhrer M
    Proteomics; 2012 May; 12(9):1337-48. PubMed ID: 22589184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.