These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 23580486)
1. A naturally occurring mouse model of achromatopsia: characterization of the mutation in cone transducin and subsequent retinal phenotype. Jobling AI; Vessey KA; Waugh M; Mills SA; Fletcher EL Invest Ophthalmol Vis Sci; 2013 May; 54(5):3350-9. PubMed ID: 23580486 [TBL] [Abstract][Full Text] [Related]
2. Cone photoreceptor function loss-3, a novel mouse model of achromatopsia due to a mutation in Gnat2. Chang B; Dacey MS; Hawes NL; Hitchcock PF; Milam AH; Atmaca-Sonmez P; Nusinowitz S; Heckenlively JR Invest Ophthalmol Vis Sci; 2006 Nov; 47(11):5017-21. PubMed ID: 17065522 [TBL] [Abstract][Full Text] [Related]
3. Cone cGMP-gated channel mutations and clinical findings in patients with achromatopsia, macular degeneration, and other hereditary cone diseases. Nishiguchi KM; Sandberg MA; Gorji N; Berson EL; Dryja TP Hum Mutat; 2005 Mar; 25(3):248-58. PubMed ID: 15712225 [TBL] [Abstract][Full Text] [Related]
4. Lentiviral gene transfer of RPE65 rescues survival and function of cones in a mouse model of Leber congenital amaurosis. Bemelmans AP; Kostic C; Crippa SV; Hauswirth WW; Lem J; Munier FL; Seeliger MW; Wenzel A; Arsenijevic Y PLoS Med; 2006 Oct; 3(10):e347. PubMed ID: 17032058 [TBL] [Abstract][Full Text] [Related]
5. Mutations in the cone photoreceptor G-protein alpha-subunit gene GNAT2 in patients with achromatopsia. Kohl S; Baumann B; Rosenberg T; Kellner U; Lorenz B; Vadalà M; Jacobson SG; Wissinger B Am J Hum Genet; 2002 Aug; 71(2):422-5. PubMed ID: 12077706 [TBL] [Abstract][Full Text] [Related]
6. A Novel Achromatopsia Mouse Model Resulting From a Naturally Occurring Missense Change in Cngb3. Hassall MM; Barnard AR; Orlans HO; McClements ME; Charbel Issa P; Aslam SA; MacLaren RE Invest Ophthalmol Vis Sci; 2018 Dec; 59(15):6102-6110. PubMed ID: 30592498 [TBL] [Abstract][Full Text] [Related]
7. Restoration of cone vision in a mouse model of achromatopsia. Alexander JJ; Umino Y; Everhart D; Chang B; Min SH; Li Q; Timmers AM; Hawes NL; Pang JJ; Barlow RB; Hauswirth WW Nat Med; 2007 Jun; 13(6):685-7. PubMed ID: 17515894 [TBL] [Abstract][Full Text] [Related]
9. Diminished Cone Sensitivity in cpfl3 Mice Is Caused by Defective Transducin Signaling. Chen NS; Ingram NT; Frederiksen R; Sampath AP; Chen J; Fain GL Invest Ophthalmol Vis Sci; 2020 Apr; 61(4):26. PubMed ID: 32315379 [TBL] [Abstract][Full Text] [Related]
10. A three base pair deletion encoding the amino acid (lysine-270) in the alpha-cone transducin gene. Piña AL; Baumert U; Loyer M; Koenekoop RK Mol Vis; 2004 Apr; 10():265-71. PubMed ID: 15094710 [TBL] [Abstract][Full Text] [Related]
11. Downregulation of cone-specific gene expression and degeneration of cone photoreceptors in the Rpe65-/- mouse at early ages. Znoiko SL; Rohrer B; Lu K; Lohr HR; Crouch RK; Ma JX Invest Ophthalmol Vis Sci; 2005 Apr; 46(4):1473-9. PubMed ID: 15790918 [TBL] [Abstract][Full Text] [Related]
12. Loss of cone function without degeneration in a novel Gnat2 knock-out mouse. Ronning KE; Allina GP; Miller EB; Zawadzki RJ; Pugh EN; Herrmann R; Burns ME Exp Eye Res; 2018 Jun; 171():111-118. PubMed ID: 29518352 [TBL] [Abstract][Full Text] [Related]
13. A CAT reporter construct containing 277bp GNAT2 promoter and 214bp IRBP enhancer is specifically expressed by cone photoreceptor cells in transgenic mice. Ying S; Fong SL; Fong WB; Kao CW; Converse RL; Kao WW Curr Eye Res; 1998 Aug; 17(8):777-82. PubMed ID: 9723991 [TBL] [Abstract][Full Text] [Related]
14. CNGA3 deficiency affects cone synaptic terminal structure and function and leads to secondary rod dysfunction and degeneration. Xu J; Morris LM; Michalakis S; Biel M; Fliesler SJ; Sherry DM; Ding XQ Invest Ophthalmol Vis Sci; 2012 Mar; 53(3):1117-29. PubMed ID: 22247469 [TBL] [Abstract][Full Text] [Related]
15. A novel middle-wavelength opsin (M-opsin) null-mutation in the retinal cone dysfunction rat. Xie B; Nakanishi S; Guo Q; Xia F; Yan G; An J; Li L; Serikawa T; Kuramoto T; Zhang Z Exp Eye Res; 2010 Jul; 91(1):26-33. PubMed ID: 20371244 [TBL] [Abstract][Full Text] [Related]
16. Mapping of a novel locus for achromatopsia (ACHM4) to 1p and identification of a germline mutation in the alpha subunit of cone transducin (GNAT2). Aligianis IA; Forshew T; Johnson S; Michaelides M; Johnson CA; Trembath RC; Hunt DM; Moore AT; Maher ER J Med Genet; 2002 Sep; 39(9):656-60. PubMed ID: 12205108 [TBL] [Abstract][Full Text] [Related]
17. Cone versus rod disease in a mutant Rpgr mouse caused by different genetic backgrounds. Brunner S; Skosyrski S; Kirschner-Schwabe R; Knobeloch KP; Neidhardt J; Feil S; Glaus E; Luhmann UF; Rüther K; Berger W Invest Ophthalmol Vis Sci; 2010 Feb; 51(2):1106-15. PubMed ID: 20007830 [TBL] [Abstract][Full Text] [Related]
18. Retinal dysfunction, photoreceptor protein dysregulation and neuronal remodelling in the R6/1 mouse model of Huntington's disease. Batcha AH; Greferath U; Jobling AI; Vessey KA; Ward MM; Nithianantharajah J; Hannan AJ; Kalloniatis M; Fletcher EL Neurobiol Dis; 2012 Mar; 45(3):887-96. PubMed ID: 22198376 [TBL] [Abstract][Full Text] [Related]
19. Long-term retinal cone survival and delayed alteration of the cone mosaic in a transgenic mouse model of stargardt-like dystrophy (STGD3). Kuny S; Filion MA; Suh M; Gaillard F; Sauvé Y Invest Ophthalmol Vis Sci; 2014 Jan; 55(1):424-39. PubMed ID: 24334447 [TBL] [Abstract][Full Text] [Related]
20. Achromatopsia as a potential candidate for gene therapy. Pang JJ; Alexander J; Lei B; Deng W; Zhang K; Li Q; Chang B; Hauswirth WW Adv Exp Med Biol; 2010; 664():639-46. PubMed ID: 20238068 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]