These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 23580524)

  • 21. Kinetics of CH2OO reactions with SO2, NO2, NO, H2O and CH3CHO as a function of pressure.
    Stone D; Blitz M; Daubney L; Howes NU; Seakins P
    Phys Chem Chem Phys; 2014 Jan; 16(3):1139-49. PubMed ID: 24287566
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Insight into Chemistry on Cloud/Aerosol Water Surfaces.
    Zhong J; Kumar M; Francisco JS; Zeng XC
    Acc Chem Res; 2018 May; 51(5):1229-1237. PubMed ID: 29633837
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reaction Kinetics of CH
    Jiang H; Liu Y; Xiao C; Yang X; Dong W
    J Phys Chem A; 2024 Jun; 128(25):4956-4965. PubMed ID: 38868987
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unimolecular Kinetics of Stabilized CH
    Robinson C; Onel L; Newman J; Lade R; Au K; Sheps L; Heard DE; Seakins PW; Blitz MA; Stone D
    J Phys Chem A; 2022 Oct; 126(39):6984-6994. PubMed ID: 36146923
    [TBL] [Abstract][Full Text] [Related]  

  • 25. UV absorption spectrum of the C2 Criegee intermediate CH3CHOO.
    Smith MC; Ting WL; Chang CH; Takahashi K; Boering KA; Lin JJ
    J Chem Phys; 2014 Aug; 141(7):074302. PubMed ID: 25149781
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct measurement of Criegee intermediate (CH2OO) reactions with acetone, acetaldehyde, and hexafluoroacetone.
    Taatjes CA; Welz O; Eskola AJ; Savee JD; Osborn DL; Lee EP; Dyke JM; Mok DW; Shallcross DE; Percival CJ
    Phys Chem Chem Phys; 2012 Aug; 14(30):10391-400. PubMed ID: 22481381
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct kinetic measurements of Criegee intermediate (CH₂OO) formed by reaction of CH₂I with O₂.
    Welz O; Savee JD; Osborn DL; Vasu SS; Percival CJ; Shallcross DE; Taatjes CA
    Science; 2012 Jan; 335(6065):204-7. PubMed ID: 22246773
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapid Atmospheric Reactions between Criegee Intermediates and Hypochlorous Acid.
    Zhang YQ; Francisco JS; Long B
    J Phys Chem A; 2024 Feb; 128(5):909-917. PubMed ID: 38271208
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure-dependent reactivity of Criegee intermediates studied with spectroscopic methods.
    Jr-Min Lin J; Chao W
    Chem Soc Rev; 2017 Dec; 46(24):7483-7497. PubMed ID: 28840926
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deep tunneling in the unimolecular decay of CH
    Fang Y; Liu F; Barber VP; Klippenstein SJ; McCoy AB; Lester MI
    J Chem Phys; 2016 Dec; 145(23):234308. PubMed ID: 28010089
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Infrared Characterization of the Products of the Reaction between the Criegee Intermediate CH
    Su ZS; Lee YP
    J Phys Chem A; 2023 Aug; 127(33):6902-6915. PubMed ID: 37561815
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Direct observation of OH formation from stabilised Criegee intermediates.
    Novelli A; Vereecken L; Lelieveld J; Harder H
    Phys Chem Chem Phys; 2014 Oct; 16(37):19941-51. PubMed ID: 25119645
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Substituent effects on the spectroscopic properties of Criegee intermediates.
    Trabelsi T; Kumar M; Francisco JS
    J Chem Phys; 2017 Oct; 147(16):164303. PubMed ID: 29096470
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The reaction between the methyl Criegee intermediate and hydrogen chloride: an FTMW spectroscopic study.
    Cabezas C; Endo Y
    Phys Chem Chem Phys; 2018 Sep; 20(35):22569-22575. PubMed ID: 30159563
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Temperature dependence of the reaction of anti-CH
    Lin LC; Chao W; Chang CH; Takahashi K; Lin JJ
    Phys Chem Chem Phys; 2016 Oct; 18(40):28189-28197. PubMed ID: 27711535
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unimolecular Reaction Rate Measurement of
    Zhou X; Liu Y; Dong W; Yang X
    J Phys Chem Lett; 2019 Sep; 10(17):4817-4821. PubMed ID: 31382744
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dramatic Conformer-Dependent Reactivity of the Acetaldehyde Oxide Criegee Intermediate with Dimethylamine
    Vansco MF; Zou M; Antonov IO; Ramasesha K; Rotavera B; Osborn DL; Georgievskii Y; Percival CJ; Klippenstein SJ; Taatjes CA; Lester MI; Caravan RL
    J Phys Chem A; 2022 Feb; 126(5):710-719. PubMed ID: 34939803
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct Measurements of Unimolecular and Bimolecular Reaction Kinetics of the Criegee Intermediate (CH
    Chhantyal-Pun R; Welz O; Savee JD; Eskola AJ; Lee EP; Blacker L; Hill HR; Ashcroft M; Khan MA; Lloyd-Jones GC; Evans L; Rotavera B; Huang H; Osborn DL; Mok DK; Dyke JM; Shallcross DE; Percival CJ; Orr-Ewing AJ; Taatjes CA
    J Phys Chem A; 2017 Jan; 121(1):4-15. PubMed ID: 27755879
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Infrared absorption spectrum of the simplest Criegee intermediate CH2OO.
    Su YT; Huang YH; Witek HA; Lee YP
    Science; 2013 Apr; 340(6129):174-6. PubMed ID: 23580523
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Infrared spectral identification of the Criegee intermediate (CH
    Wang YY; Chung CY; Lee YP
    J Chem Phys; 2016 Oct; 145(15):154303. PubMed ID: 27782495
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.