These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. In vitro binding affinity of the Bacillus subtilis AbrB protein to six different DNA target regions. Strauch MA J Bacteriol; 1995 Aug; 177(15):4532-6. PubMed ID: 7635837 [TBL] [Abstract][Full Text] [Related]
6. In vitro selection of optimal AbrB-binding sites: comparison to known in vivo sites indicates flexibility in AbrB binding and recognition of three-dimensional DNA structures. Xu K; Strauch MA Mol Microbiol; 1996 Jan; 19(1):145-58. PubMed ID: 8821944 [TBL] [Abstract][Full Text] [Related]
7. Dissection of the Bacillus subtilis spoOE binding site for the global regulator AbrB reveals smaller recognition elements. Strauch MA Mol Gen Genet; 1996 Apr; 250(6):742-9. PubMed ID: 8628235 [TBL] [Abstract][Full Text] [Related]
9. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data. Kähärä J; Lähdesmäki H Bioinformatics; 2015 Sep; 31(17):2852-9. PubMed ID: 25957350 [TBL] [Abstract][Full Text] [Related]
10. Delineation of AbrB-binding sites on the Bacillus subtilis spo0H, kinB, ftsAZ, and pbpE promoters and use of a derived homology to identify a previously unsuspected binding site in the bsuB1 methylase promote. Strauch MA J Bacteriol; 1995 Dec; 177(23):6999-7002. PubMed ID: 7592498 [TBL] [Abstract][Full Text] [Related]
11. The Spo0A protein of Bacillus subtilis inhibits transcription of the abrB gene without preventing binding of the polymerase to the promoter. Greene EA; Spiegelman GB J Biol Chem; 1996 May; 271(19):11455-61. PubMed ID: 8626703 [TBL] [Abstract][Full Text] [Related]
12. Analysis of computational footprinting methods for DNase sequencing experiments. Gusmao EG; Allhoff M; Zenke M; Costa IG Nat Methods; 2016 Apr; 13(4):303-9. PubMed ID: 26901649 [TBL] [Abstract][Full Text] [Related]
13. Genomic Footprinting Analyses from DNase-seq Data to Construct Gene Regulatory Networks. Moyano TC; Gutiérrez RA; Alvarez JM Methods Mol Biol; 2021; 2328():25-46. PubMed ID: 34251618 [TBL] [Abstract][Full Text] [Related]
15. The competence transcription factor of Bacillus subtilis recognizes short A/T-rich sequences arranged in a unique, flexible pattern along the DNA helix. Hamoen LW; Van Werkhoven AF; Bijlsma JJ; Dubnau D; Venema G Genes Dev; 1998 May; 12(10):1539-50. PubMed ID: 9585513 [TBL] [Abstract][Full Text] [Related]
16. Interaction of AbrB, a transcriptional regulator from Bacillus subtilis with the promoters of the transition state-activated genes tycA and spoVG. Fürbass R; Gocht M; Zuber P; Marahiel MA Mol Gen Genet; 1991 Mar; 225(3):347-54. PubMed ID: 1850083 [TBL] [Abstract][Full Text] [Related]
17. Genome-wide binding profiles of the Bacillus subtilis transition state regulator AbrB and its homolog Abh reveals their interactive role in transcriptional regulation. Chumsakul O; Takahashi H; Oshima T; Hishimoto T; Kanaya S; Ogasawara N; Ishikawa S Nucleic Acids Res; 2011 Jan; 39(2):414-28. PubMed ID: 20817675 [TBL] [Abstract][Full Text] [Related]
18. Wellington: a novel method for the accurate identification of digital genomic footprints from DNase-seq data. Piper J; Elze MC; Cauchy P; Cockerill PN; Bonifer C; Ott S Nucleic Acids Res; 2013 Nov; 41(21):e201. PubMed ID: 24071585 [TBL] [Abstract][Full Text] [Related]