These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 23580539)

  • 1. High-resolution mapping of in vivo genomic transcription factor binding sites using in situ DNase I footprinting and ChIP-seq.
    Chumsakul O; Nakamura K; Kurata T; Sakamoto T; Hobman JL; Ogasawara N; Oshima T; Ishikawa S
    DNA Res; 2013 Aug; 20(4):325-38. PubMed ID: 23580539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-Wide Analysis of ResD, NsrR, and Fur Binding in Bacillus subtilis during Anaerobic Fermentative Growth by
    Chumsakul O; Anantsri DP; Quirke T; Oshima T; Nakamura K; Ishikawa S; Nakano MM
    J Bacteriol; 2017 Jul; 199(13):. PubMed ID: 28439033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GeF-seq: A Simple Procedure for Base Pair Resolution ChIP-seq.
    Chumsakul O; Nakamura K; Ishikawa S; Oshima T
    Methods Mol Biol; 2018; 1837():33-47. PubMed ID: 30109604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GeF-seq: A Simple Procedure for Base-Pair Resolution ChIP-seq.
    Chumsakul O; Nakamura K; Fukamachi K; Ishikawa S; Oshima T
    Methods Mol Biol; 2024; 2819():39-53. PubMed ID: 39028501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro binding affinity of the Bacillus subtilis AbrB protein to six different DNA target regions.
    Strauch MA
    J Bacteriol; 1995 Aug; 177(15):4532-6. PubMed ID: 7635837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro selection of optimal AbrB-binding sites: comparison to known in vivo sites indicates flexibility in AbrB binding and recognition of three-dimensional DNA structures.
    Xu K; Strauch MA
    Mol Microbiol; 1996 Jan; 19(1):145-58. PubMed ID: 8821944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissection of the Bacillus subtilis spoOE binding site for the global regulator AbrB reveals smaller recognition elements.
    Strauch MA
    Mol Gen Genet; 1996 Apr; 250(6):742-9. PubMed ID: 8628235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Explicit DNase sequence bias modeling enables high-resolution transcription factor footprint detection.
    Yardımcı GG; Frank CL; Crawford GE; Ohler U
    Nucleic Acids Res; 2014 Oct; 42(19):11865-78. PubMed ID: 25294828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data.
    Kähärä J; Lähdesmäki H
    Bioinformatics; 2015 Sep; 31(17):2852-9. PubMed ID: 25957350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delineation of AbrB-binding sites on the Bacillus subtilis spo0H, kinB, ftsAZ, and pbpE promoters and use of a derived homology to identify a previously unsuspected binding site in the bsuB1 methylase promote.
    Strauch MA
    J Bacteriol; 1995 Dec; 177(23):6999-7002. PubMed ID: 7592498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Spo0A protein of Bacillus subtilis inhibits transcription of the abrB gene without preventing binding of the polymerase to the promoter.
    Greene EA; Spiegelman GB
    J Biol Chem; 1996 May; 271(19):11455-61. PubMed ID: 8626703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of computational footprinting methods for DNase sequencing experiments.
    Gusmao EG; Allhoff M; Zenke M; Costa IG
    Nat Methods; 2016 Apr; 13(4):303-9. PubMed ID: 26901649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic Footprinting Analyses from DNase-seq Data to Construct Gene Regulatory Networks.
    Moyano TC; Gutiérrez RA; Alvarez JM
    Methods Mol Biol; 2021; 2328():25-46. PubMed ID: 34251618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. XL-DNase-seq: improved footprinting of dynamic transcription factors.
    Oh KS; Ha J; Baek S; Sung MH
    Epigenetics Chromatin; 2019 Jun; 12(1):30. PubMed ID: 31164146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The competence transcription factor of Bacillus subtilis recognizes short A/T-rich sequences arranged in a unique, flexible pattern along the DNA helix.
    Hamoen LW; Van Werkhoven AF; Bijlsma JJ; Dubnau D; Venema G
    Genes Dev; 1998 May; 12(10):1539-50. PubMed ID: 9585513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of AbrB, a transcriptional regulator from Bacillus subtilis with the promoters of the transition state-activated genes tycA and spoVG.
    Fürbass R; Gocht M; Zuber P; Marahiel MA
    Mol Gen Genet; 1991 Mar; 225(3):347-54. PubMed ID: 1850083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide binding profiles of the Bacillus subtilis transition state regulator AbrB and its homolog Abh reveals their interactive role in transcriptional regulation.
    Chumsakul O; Takahashi H; Oshima T; Hishimoto T; Kanaya S; Ogasawara N; Ishikawa S
    Nucleic Acids Res; 2011 Jan; 39(2):414-28. PubMed ID: 20817675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wellington: a novel method for the accurate identification of digital genomic footprints from DNase-seq data.
    Piper J; Elze MC; Cauchy P; Cockerill PN; Bonifer C; Ott S
    Nucleic Acids Res; 2013 Nov; 41(21):e201. PubMed ID: 24071585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The DNA-binding specificity of the Bacillus anthracis AbrB protein.
    Strauch MA; Ballar P; Rowshan AJ; Zoller KL
    Microbiology (Reading); 2005 Jun; 151(Pt 6):1751-1759. PubMed ID: 15941984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into the nature of DNA binding of AbrB-like transcription factors.
    Sullivan DM; Bobay BG; Kojetin DJ; Thompson RJ; Rance M; Strauch MA; Cavanagh J
    Structure; 2008 Nov; 16(11):1702-13. PubMed ID: 19000822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.