BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 23580620)

  • 21. Mammary stem cells and the differentiation hierarchy: current status and perspectives.
    Visvader JE; Stingl J
    Genes Dev; 2014 Jun; 28(11):1143-58. PubMed ID: 24888586
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular signature of the putative stem/progenitor cells committed to the development of the bovine mammary gland at puberty.
    Finot L; Chanat E; Dessauge F
    Sci Rep; 2018 Nov; 8(1):16194. PubMed ID: 30385815
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enrichment for Repopulating Cells and Identification of Differentiation Markers in the Bovine Mammary Gland.
    Rauner G; Barash I
    J Mammary Gland Biol Neoplasia; 2016 Jun; 21(1-2):41-9. PubMed ID: 26615610
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identity and dynamics of mammary stem cells during branching morphogenesis.
    Scheele CL; Hannezo E; Muraro MJ; Zomer A; Langedijk NS; van Oudenaarden A; Simons BD; van Rheenen J
    Nature; 2017 Feb; 542(7641):313-317. PubMed ID: 28135720
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Parity reduces mammary repopulating activity but does not affect mammary stem cells defined as CD24 + CD29/CD49fhi in mice.
    Dall GV; Vieusseux J; Seyed-Razavi Y; Godde N; Ludford-Menting M; Russell SM; Ashworth A; Anderson RL; Risbridger GP; Shackleton M; Britt KL
    Breast Cancer Res Treat; 2020 Oct; 183(3):565-575. PubMed ID: 32696317
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of goat mammary stem/progenitor cells.
    Prpar S; Martignani E; Dovc P; Baratta M
    Biol Reprod; 2012 Apr; 86(4):117. PubMed ID: 22238284
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chromatin effector Pygo2 mediates Wnt-notch crosstalk to suppress luminal/alveolar potential of mammary stem and basal cells.
    Gu B; Watanabe K; Sun P; Fallahi M; Dai X
    Cell Stem Cell; 2013 Jul; 13(1):48-61. PubMed ID: 23684539
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mammospheres from murine mammary stem cell-enriched basal cells: clonal characteristics and repopulating potential.
    Dong Q; Wang D; Bandyopadhyay A; Gao H; Gorena KM; Hildreth K; Rebel VI; Walter CA; Huang C; Sun LZ
    Stem Cell Res; 2013 May; 10(3):396-404. PubMed ID: 23466563
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An essential role of CBL and CBL-B ubiquitin ligases in mammary stem cell maintenance.
    Mohapatra B; Zutshi N; An W; Goetz B; Arya P; Bielecki TA; Mushtaq I; Storck MD; Meza JL; Band V; Band H
    Development; 2017 Mar; 144(6):1072-1086. PubMed ID: 28100467
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Progesterone induces adult mammary stem cell expansion.
    Joshi PA; Jackson HW; Beristain AG; Di Grappa MA; Mote PA; Clarke CL; Stingl J; Waterhouse PD; Khokha R
    Nature; 2010 Jun; 465(7299):803-7. PubMed ID: 20445538
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evidence for a multipotent mammary progenitor with pregnancy-specific activity.
    Kaanta AS; Virtanen C; Selfors LM; Brugge JS; Neel BG
    Breast Cancer Res; 2013; 15(4):R65. PubMed ID: 23947835
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasticity and Potency of Mammary Stem Cell Subsets During Mammary Gland Development.
    Lee E; Piranlioglu R; Wicha MS; Korkaya H
    Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31085991
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cancer stemness in Wnt-driven mammary tumorigenesis.
    Monteiro J; Gaspar C; Richer W; Franken PF; Sacchetti A; Joosten R; Idali A; Brandao J; Decraene C; Fodde R
    Carcinogenesis; 2014 Jan; 35(1):2-13. PubMed ID: 23955540
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mammary gland stem cells and their application in breast cancer.
    Yang X; Wang H; Jiao B
    Oncotarget; 2017 Feb; 8(6):10675-10691. PubMed ID: 27793013
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assays for functionally defined normal and malignant mammary stem cells.
    Aalam SMM; Beer PA; Kannan N
    Adv Cancer Res; 2019; 141():129-174. PubMed ID: 30691682
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A pooled shRNA screen for regulators of primary mammary stem and progenitor cells identifies roles for Asap1 and Prox1.
    Sheridan JM; Ritchie ME; Best SA; Jiang K; Beck TJ; Vaillant F; Liu K; Dickins RA; Smyth GK; Lindeman GJ; Visvader JE
    BMC Cancer; 2015 Apr; 15():221. PubMed ID: 25879659
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MiR203 mediates subversion of stem cell properties during mammary epithelial differentiation via repression of ΔNP63α and promotes mesenchymal-to-epithelial transition.
    DeCastro AJ; Dunphy KA; Hutchinson J; Balboni AL; Cherukuri P; Jerry DJ; DiRenzo J
    Cell Death Dis; 2013 Feb; 4(2):e514. PubMed ID: 23449450
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population.
    Welm BE; Tepera SB; Venezia T; Graubert TA; Rosen JM; Goodell MA
    Dev Biol; 2002 May; 245(1):42-56. PubMed ID: 11969254
    [TBL] [Abstract][Full Text] [Related]  

  • 39. How should we define mammary stem cells?
    Watson CJ
    Trends Cell Biol; 2021 Aug; 31(8):621-627. PubMed ID: 33902986
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integrin αvβ3 drives slug activation and stemness in the pregnant and neoplastic mammary gland.
    Desgrosellier JS; Lesperance J; Seguin L; Gozo M; Kato S; Franovic A; Yebra M; Shattil SJ; Cheresh DA
    Dev Cell; 2014 Aug; 30(3):295-308. PubMed ID: 25117682
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.