These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 23581298)
21. Berry-phase-induced heat pumping and its impact on the fluctuation theorem. Ren J; Hänggi P; Li B Phys Rev Lett; 2010 Apr; 104(17):170601. PubMed ID: 20482098 [TBL] [Abstract][Full Text] [Related]
22. Combinatorial optimization by simulating adiabatic bifurcations in nonlinear Hamiltonian systems. Goto H; Tatsumura K; Dixon AR Sci Adv; 2019 Apr; 5(4):eaav2372. PubMed ID: 31016238 [TBL] [Abstract][Full Text] [Related]
24. Quantum fidelity for degenerate ground states in quantum phase transitions. Su YH; Hu BQ; Li SH; Cho SY Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032110. PubMed ID: 24125217 [TBL] [Abstract][Full Text] [Related]
25. Statistical mechanics of the quantum K -satisfiability problem. Knysh S; Smelyanskiy VN Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 1):061128. PubMed ID: 19256823 [TBL] [Abstract][Full Text] [Related]
26. Berry phase for a spin 1/2 particle in a classical fluctuating field. De Chiara G; Palma GM Phys Rev Lett; 2003 Aug; 91(9):090404. PubMed ID: 14525165 [TBL] [Abstract][Full Text] [Related]
27. Semiclassical Monte Carlo: a first principles approach to non-adiabatic molecular dynamics. White AJ; Gorshkov VN; Wang R; Tretiak S; Mozyrsky D J Chem Phys; 2014 Nov; 141(18):184101. PubMed ID: 25399126 [TBL] [Abstract][Full Text] [Related]
28. A periodic orbit bifurcation analysis of vibrationally excited isotopologues of sulfur dioxide and water molecules: symmetry breaking substitutions. Mauguiere F; Rey M; Tyuterev V; Suarez J; Farantos SC J Phys Chem A; 2010 Sep; 114(36):9836-47. PubMed ID: 20825241 [TBL] [Abstract][Full Text] [Related]
29. Nongeometric conditional phase shift via adiabatic evolution of dark eigenstates: a new approach to quantum computation. Zheng SB Phys Rev Lett; 2005 Aug; 95(8):080502. PubMed ID: 16196842 [TBL] [Abstract][Full Text] [Related]
30. Bifurcation analysis of a normal form for excitable media: are stable dynamical alternans on a ring possible? Gottwald GA Chaos; 2008 Mar; 18(1):013129. PubMed ID: 18377080 [TBL] [Abstract][Full Text] [Related]
31. Analysis of adiabatic trapping for quasi-integrable area-preserving maps. Bazzani A; Frye C; Giovannozzi M; Hernalsteens C Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042915. PubMed ID: 24827321 [TBL] [Abstract][Full Text] [Related]
32. Topology hidden behind the breakdown of adiabaticity. Fu LB; Chen SG Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016607. PubMed ID: 15697747 [TBL] [Abstract][Full Text] [Related]
33. Catastrophic bifurcation from riddled to fractal basins. Lai YC; Andrade V Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056228. PubMed ID: 11736075 [TBL] [Abstract][Full Text] [Related]
35. Large Deviation Full Counting Statistics in Adiabatic Open Quantum Dynamics. Paulino PJ; Lesanovsky I; Carollo F Phys Rev Lett; 2024 Jun; 132(26):260402. PubMed ID: 38996317 [TBL] [Abstract][Full Text] [Related]
36. Symmetry-Breaking Bifurcations of the Information Bottleneck and Related Problems. Parker AE; Dimitrov AG Entropy (Basel); 2022 Sep; 24(9):. PubMed ID: 36141117 [TBL] [Abstract][Full Text] [Related]
37. Early effect in time-dependent, high-dimensional nonlinear dynamical systems with multiple resonances. Park Y; Do Y; Altmeyer S; Lai YC; Lee G Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022906. PubMed ID: 25768568 [TBL] [Abstract][Full Text] [Related]
38. Jumps of adiabatic invariant at the separatrix of a degenerate saddle point. Artemyev AV; Neishtadt AI; Zelenyi LM Chaos; 2011 Dec; 21(4):043120. PubMed ID: 22225357 [TBL] [Abstract][Full Text] [Related]
39. Counterdiabatic mode-evolution based coupled-waveguide devices. Tseng SY Opt Express; 2013 Sep; 21(18):21224-35. PubMed ID: 24103996 [TBL] [Abstract][Full Text] [Related]
40. Continuum mechanics of nonideal crystals: Microscopic approach based on projection-operator formalism. Miserez F; Ganguly S; Haussmann R; Fuchs M Phys Rev E; 2022 Nov; 106(5-1):054125. PubMed ID: 36559486 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]