These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
376 related articles for article (PubMed ID: 23581371)
1. Observation of forbidden exciton transitions mediated by Coulomb interactions in photoexcited semiconductor quantum wells. Rice WD; Kono J; Zybell S; Winnerl S; Bhattacharyya J; Schneider H; Helm M; Ewers B; Chernikov A; Koch M; Chatterjee S; Khitrova G; Gibbs HM; Schneebeli L; Breddermann B; Kira M; Koch SW Phys Rev Lett; 2013 Mar; 110(13):137404. PubMed ID: 23581371 [TBL] [Abstract][Full Text] [Related]
2. Terahertz excitation of a coherent λ-type three-level system of exciton-polariton modes in a quantum-well microcavity. Tomaino JL; Jameson AD; Lee YS; Khitrova G; Gibbs HM; Klettke AC; Kira M; Koch SW Phys Rev Lett; 2012 Jun; 108(26):267402. PubMed ID: 23005012 [TBL] [Abstract][Full Text] [Related]
3. Double resonant Raman scattering and valley coherence generation in monolayer WSe_{2}. Wang G; Glazov MM; Robert C; Amand T; Marie X; Urbaszek B Phys Rev Lett; 2015 Sep; 115(11):117401. PubMed ID: 26406852 [TBL] [Abstract][Full Text] [Related]
4. Theoretical study of density-dependent intraexcitonic transitions in optically excited quantum wells. Wang D; Lei X; Wu Z J Phys Condens Matter; 2011 Aug; 23(34):345801. PubMed ID: 21841223 [TBL] [Abstract][Full Text] [Related]
5. Observation of the intraexciton Autler-Townes effect in GaAs/AlGaAs semiconductor quantum wells. Wagner M; Schneider H; Stehr D; Winnerl S; Andrews AM; Schartner S; Strasser G; Helm M Phys Rev Lett; 2010 Oct; 105(16):167401. PubMed ID: 21231010 [TBL] [Abstract][Full Text] [Related]
6. Light-Induced Activation of Forbidden Exciton Transition in Strongly Confined Perovskite Quantum Dots. Rossi D; Wang H; Dong Y; Qiao T; Qian X; Son DH ACS Nano; 2018 Dec; 12(12):12436-12443. PubMed ID: 30521756 [TBL] [Abstract][Full Text] [Related]
7. Influence of two-pair continuum correlations following resonant excitation of excitons. Axt VM; Haase B; Neukirch U Phys Rev Lett; 2001 May; 86(20):4620-3. PubMed ID: 11384298 [TBL] [Abstract][Full Text] [Related]
8. Excitonic photoluminescence in semiconductor quantum wells: plasma versus excitons. Chatterjee S; Ell C; Mosor S; Khitrova G; Gibbs HM; Hoyer W; Kira M; Koch SW; Prineas JP; Stolz H Phys Rev Lett; 2004 Feb; 92(6):067402. PubMed ID: 14995274 [TBL] [Abstract][Full Text] [Related]
9. Semiconductor excitons in new light. Koch SW; Kira M; Khitrova G; Gibbs HM Nat Mater; 2006 Jul; 5(7):523-31. PubMed ID: 16819475 [TBL] [Abstract][Full Text] [Related]
17. Photoluminescence Enhancement through Symmetry Breaking Induced by Defects in Nanocrystals. Sercel PC; Shabaev A; Efros AL Nano Lett; 2017 Aug; 17(8):4820-4830. PubMed ID: 28715222 [TBL] [Abstract][Full Text] [Related]
18. Direct observation of the mott transition in an optically excited semiconductor quantum well. Kappei L; Szczytko J; Morier-Genoud F; Deveaud B Phys Rev Lett; 2005 Apr; 94(14):147403. PubMed ID: 15904111 [TBL] [Abstract][Full Text] [Related]
19. Exciton-population inversion and terahertz gain in semiconductors excited to resonance. Kira M; Koch SW Phys Rev Lett; 2004 Aug; 93(7):076402. PubMed ID: 15324255 [TBL] [Abstract][Full Text] [Related]
20. Fano signatures in the intersubband terahertz response of optically excited semiconductor quantum wells. Golde D; Wagner M; Stehr D; Schneider H; Helm M; Andrews AM; Roch T; Strasser G; Kira M; Koch SW Phys Rev Lett; 2009 Mar; 102(12):127403. PubMed ID: 19392323 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]